基于Tucker-net的SIRS模型的城市交通事故动态相关性分析——以纽约市为例

IF 4.2 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Junjie Hu , Jun Bai , Jinbao Zhang , Young-Ji Byon , Jaeyoung Jay Lee
{"title":"基于Tucker-net的SIRS模型的城市交通事故动态相关性分析——以纽约市为例","authors":"Junjie Hu ,&nbsp;Jun Bai ,&nbsp;Jinbao Zhang ,&nbsp;Young-Ji Byon ,&nbsp;Jaeyoung Jay Lee","doi":"10.1016/j.jfranklin.2025.107946","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the spatiotemporal dynamics of traffic crash hotspots remains a critical challenge in urban safety management, hindered by two fundamental limitations: the inherent randomness and sparsity of crash data impede robust hotspot identification, while existing frameworks fail to model dynamic correlations between geographically dispersed zones. This paper introduces a new data-driven and transferable analysis model: Tucker-Net based Susceptible-Infectious-Recovered-Susceptible (SIRS) model (TNBSM) to address this gap. TNBSM designs a novel network named Tucker-Net for investigating the correlation between sparse crash data with a modified epidemic SIRS model, effectively capturing the spatiotemporal correlations of crash zones. Empirically validated using data in the New York City, TNBSM reveals significant discrepancies in crash trends between weekdays and weekends, and long-term semantic correlations between crash zones, highlighting its effectiveness in understanding highly dynamic correlation of urban traffic crash. The robustness and potential of the TNBSM model are further substantiated through three key aspects: comparative predictive capability analysis with three baseline models, assessment of parameter stability, and examination of model unbiasedness.</div></div>","PeriodicalId":17283,"journal":{"name":"Journal of The Franklin Institute-engineering and Applied Mathematics","volume":"362 13","pages":"Article 107946"},"PeriodicalIF":4.2000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic correlation analysis of urban crashes using Tucker-net based SIRS model: A case study in New York City\",\"authors\":\"Junjie Hu ,&nbsp;Jun Bai ,&nbsp;Jinbao Zhang ,&nbsp;Young-Ji Byon ,&nbsp;Jaeyoung Jay Lee\",\"doi\":\"10.1016/j.jfranklin.2025.107946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Understanding the spatiotemporal dynamics of traffic crash hotspots remains a critical challenge in urban safety management, hindered by two fundamental limitations: the inherent randomness and sparsity of crash data impede robust hotspot identification, while existing frameworks fail to model dynamic correlations between geographically dispersed zones. This paper introduces a new data-driven and transferable analysis model: Tucker-Net based Susceptible-Infectious-Recovered-Susceptible (SIRS) model (TNBSM) to address this gap. TNBSM designs a novel network named Tucker-Net for investigating the correlation between sparse crash data with a modified epidemic SIRS model, effectively capturing the spatiotemporal correlations of crash zones. Empirically validated using data in the New York City, TNBSM reveals significant discrepancies in crash trends between weekdays and weekends, and long-term semantic correlations between crash zones, highlighting its effectiveness in understanding highly dynamic correlation of urban traffic crash. The robustness and potential of the TNBSM model are further substantiated through three key aspects: comparative predictive capability analysis with three baseline models, assessment of parameter stability, and examination of model unbiasedness.</div></div>\",\"PeriodicalId\":17283,\"journal\":{\"name\":\"Journal of The Franklin Institute-engineering and Applied Mathematics\",\"volume\":\"362 13\",\"pages\":\"Article 107946\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Franklin Institute-engineering and Applied Mathematics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016003225004399\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Franklin Institute-engineering and Applied Mathematics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016003225004399","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

了解交通碰撞热点的时空动态仍然是城市安全管理中的一个关键挑战,受到两个基本限制的阻碍:碰撞数据固有的随机性和稀疏性阻碍了热点识别的鲁棒性,而现有框架无法模拟地理分散区域之间的动态相关性。本文提出了一种新的数据驱动和可转移的分析模型:基于Tucker-Net的易感-感染-恢复-易感(SIRS)模型(TNBSM)来解决这一问题。TNBSM设计了一种名为Tucker-Net的新颖网络,用于研究稀疏碰撞数据与改进的流行病SIRS模型之间的相关性,有效捕获碰撞区域的时空相关性。利用纽约市的数据进行实证验证,TNBSM揭示了工作日和周末之间碰撞趋势的显著差异,以及碰撞区域之间的长期语义相关性,突出了其在理解城市交通碰撞高度动态相关性方面的有效性。通过三个关键方面:与三个基线模型的比较预测能力分析、参数稳定性评估和模型无偏性检验,进一步证实了TNBSM模型的稳健性和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic correlation analysis of urban crashes using Tucker-net based SIRS model: A case study in New York City
Understanding the spatiotemporal dynamics of traffic crash hotspots remains a critical challenge in urban safety management, hindered by two fundamental limitations: the inherent randomness and sparsity of crash data impede robust hotspot identification, while existing frameworks fail to model dynamic correlations between geographically dispersed zones. This paper introduces a new data-driven and transferable analysis model: Tucker-Net based Susceptible-Infectious-Recovered-Susceptible (SIRS) model (TNBSM) to address this gap. TNBSM designs a novel network named Tucker-Net for investigating the correlation between sparse crash data with a modified epidemic SIRS model, effectively capturing the spatiotemporal correlations of crash zones. Empirically validated using data in the New York City, TNBSM reveals significant discrepancies in crash trends between weekdays and weekends, and long-term semantic correlations between crash zones, highlighting its effectiveness in understanding highly dynamic correlation of urban traffic crash. The robustness and potential of the TNBSM model are further substantiated through three key aspects: comparative predictive capability analysis with three baseline models, assessment of parameter stability, and examination of model unbiasedness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
14.60%
发文量
586
审稿时长
6.9 months
期刊介绍: The Journal of The Franklin Institute has an established reputation for publishing high-quality papers in the field of engineering and applied mathematics. Its current focus is on control systems, complex networks and dynamic systems, signal processing and communications and their applications. All submitted papers are peer-reviewed. The Journal will publish original research papers and research review papers of substance. Papers and special focus issues are judged upon possible lasting value, which has been and continues to be the strength of the Journal of The Franklin Institute.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信