基于多模态特征融合的化学爆炸后果预测模型

IF 5.7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yilin Wang, Beibei Wang, Yichen Zhang, Jiquan Zhang, Yijie Song, Shuang-Hua Yang
{"title":"基于多模态特征融合的化学爆炸后果预测模型","authors":"Yilin Wang,&nbsp;Beibei Wang,&nbsp;Yichen Zhang,&nbsp;Jiquan Zhang,&nbsp;Yijie Song,&nbsp;Shuang-Hua Yang","doi":"10.1186/s13321-025-01060-x","DOIUrl":null,"url":null,"abstract":"<p>Chemical explosion accidents represent a significant threat to both human safety and environmental integrity. The accurate prediction of such incidents plays a pivotal role in risk mitigation and safety enhancement within the chemical industry. This study proposes an innovative Bayes-Transformer-SVM model based on multimodal feature fusion, integrating Quantitative Structure–Property Relationship (QSPR) and Quantitative Property-Consequence Relationship (QPCR) principles. The model utilizes molecular descriptors derived from the Simplified Molecular Input Line Entry System (SMILES) and Gaussian16 software, combined with leakage condition parameters, as input features to investigate the quantitative relationship between these factors and explosion consequences. A comprehensive validation and evaluation of the constructed model were performed. Results demonstrate that the optimized Bayes-Transformer-SVM model achieves superior performance, with test set metrics reaching an R<sup>2</sup> of 0.9475 and RMSE of 0.1139, outperforming alternative prediction models. The developed model offers a novel and effective approach for assessing explosion risks associated with both existing and newly developed chemical substances. The model enables rapid explosion consequence assessment for chemical storage or transport scenarios, supporting safety-by-design frameworks.</p><p>This study constructed a Bayes-Transformer-SVM model for predicting the consequences of hazardous chemical explosions. The model utilized SMILES encoding and Gaussian16 quantum chemical descriptors, combined with leakage condition scenario parameters, achieving excellent performance. Its core lies in the establishment of a multimodal fusion theoretical framework, breaking through the limitations oftraditional cross-modal correlation analysis; the development of an optimized architecture that combines Transformer feature extraction and SVM regression; highlighting the potential application of the model in chemoinformatics; and enabling the prospective assessment of the explosion risks of unknown chemicals, supporting a safety-oriented design concept.</p>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01060-x","citationCount":"0","resultStr":"{\"title\":\"Prediction model for chemical explosion consequences via multimodal feature fusion\",\"authors\":\"Yilin Wang,&nbsp;Beibei Wang,&nbsp;Yichen Zhang,&nbsp;Jiquan Zhang,&nbsp;Yijie Song,&nbsp;Shuang-Hua Yang\",\"doi\":\"10.1186/s13321-025-01060-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Chemical explosion accidents represent a significant threat to both human safety and environmental integrity. The accurate prediction of such incidents plays a pivotal role in risk mitigation and safety enhancement within the chemical industry. This study proposes an innovative Bayes-Transformer-SVM model based on multimodal feature fusion, integrating Quantitative Structure–Property Relationship (QSPR) and Quantitative Property-Consequence Relationship (QPCR) principles. The model utilizes molecular descriptors derived from the Simplified Molecular Input Line Entry System (SMILES) and Gaussian16 software, combined with leakage condition parameters, as input features to investigate the quantitative relationship between these factors and explosion consequences. A comprehensive validation and evaluation of the constructed model were performed. Results demonstrate that the optimized Bayes-Transformer-SVM model achieves superior performance, with test set metrics reaching an R<sup>2</sup> of 0.9475 and RMSE of 0.1139, outperforming alternative prediction models. The developed model offers a novel and effective approach for assessing explosion risks associated with both existing and newly developed chemical substances. The model enables rapid explosion consequence assessment for chemical storage or transport scenarios, supporting safety-by-design frameworks.</p><p>This study constructed a Bayes-Transformer-SVM model for predicting the consequences of hazardous chemical explosions. The model utilized SMILES encoding and Gaussian16 quantum chemical descriptors, combined with leakage condition scenario parameters, achieving excellent performance. Its core lies in the establishment of a multimodal fusion theoretical framework, breaking through the limitations oftraditional cross-modal correlation analysis; the development of an optimized architecture that combines Transformer feature extraction and SVM regression; highlighting the potential application of the model in chemoinformatics; and enabling the prospective assessment of the explosion risks of unknown chemicals, supporting a safety-oriented design concept.</p>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01060-x\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-025-01060-x\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-01060-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

化学爆炸事故是对人类安全和环境完整性的重大威胁。对此类事件的准确预测在减轻化学工业的风险和加强安全方面起着关键作用。本研究结合定量结构-属性关系(QSPR)和定量属性-后果关系(QPCR)原理,提出了一种基于多模态特征融合的贝叶斯-变换-支持向量机模型。该模型利用来自简化分子输入线输入系统(SMILES)和Gaussian16软件的分子描述符,结合泄漏条件参数作为输入特征,研究这些因素与爆炸后果之间的定量关系。对所构建的模型进行了全面的验证和评价。结果表明,优化后的Bayes-Transformer-SVM模型性能优越,测试集指标R2为0.9475,RMSE为0.1139,优于其他预测模型。所建立的模型为评估现有和新开发的化学物质的爆炸风险提供了一种新颖有效的方法。该模型能够对化学品储存或运输场景进行快速爆炸后果评估,支持设计安全框架。本文构建了危险化学品爆炸后果预测的贝叶斯-变换-支持向量机模型。该模型利用SMILES编码和Gaussian16量子化学描述符,结合泄漏条件场景参数,取得了优异的性能。其核心在于建立了多模态融合理论框架,突破了传统跨模态相关分析的局限性;开发了Transformer特征提取与SVM回归相结合的优化架构;强调了该模型在化学信息学中的潜在应用;并且能够对未知化学品的爆炸风险进行前瞻性评估,支持以安全为导向的设计理念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction model for chemical explosion consequences via multimodal feature fusion

Chemical explosion accidents represent a significant threat to both human safety and environmental integrity. The accurate prediction of such incidents plays a pivotal role in risk mitigation and safety enhancement within the chemical industry. This study proposes an innovative Bayes-Transformer-SVM model based on multimodal feature fusion, integrating Quantitative Structure–Property Relationship (QSPR) and Quantitative Property-Consequence Relationship (QPCR) principles. The model utilizes molecular descriptors derived from the Simplified Molecular Input Line Entry System (SMILES) and Gaussian16 software, combined with leakage condition parameters, as input features to investigate the quantitative relationship between these factors and explosion consequences. A comprehensive validation and evaluation of the constructed model were performed. Results demonstrate that the optimized Bayes-Transformer-SVM model achieves superior performance, with test set metrics reaching an R2 of 0.9475 and RMSE of 0.1139, outperforming alternative prediction models. The developed model offers a novel and effective approach for assessing explosion risks associated with both existing and newly developed chemical substances. The model enables rapid explosion consequence assessment for chemical storage or transport scenarios, supporting safety-by-design frameworks.

This study constructed a Bayes-Transformer-SVM model for predicting the consequences of hazardous chemical explosions. The model utilized SMILES encoding and Gaussian16 quantum chemical descriptors, combined with leakage condition scenario parameters, achieving excellent performance. Its core lies in the establishment of a multimodal fusion theoretical framework, breaking through the limitations oftraditional cross-modal correlation analysis; the development of an optimized architecture that combines Transformer feature extraction and SVM regression; highlighting the potential application of the model in chemoinformatics; and enabling the prospective assessment of the explosion risks of unknown chemicals, supporting a safety-oriented design concept.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信