基于生成式人工智能的分子设计优化模型。

IF 5.7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tarek Khater, Sara Awni Alkhatib, Aamna AlShehhi, Charalampos Pitsalidis, Anna Maria Pappa, Son Tung Ngo, Vincent Chan, Vi Khanh Truong
{"title":"基于生成式人工智能的分子设计优化模型。","authors":"Tarek Khater,&nbsp;Sara Awni Alkhatib,&nbsp;Aamna AlShehhi,&nbsp;Charalampos Pitsalidis,&nbsp;Anna Maria Pappa,&nbsp;Son Tung Ngo,&nbsp;Vincent Chan,&nbsp;Vi Khanh Truong","doi":"10.1186/s13321-025-01059-4","DOIUrl":null,"url":null,"abstract":"<div><p>Generative artificial intelligence (GenAI) models have emerged as a transformative tool for addressing the complex challenges of drug discovery, enabling the design of structurally diverse, chemically valid, and functionally relevant molecules. Despite significant advancements, the rapid expansion of GenAI applications still faces challenges related to prediction accuracy, molecular validity, and optimization for drug-like properties. This review provides a comprehensive analysis of recent techniques and strategies aimed at enhancing the performance of GenAI models in molecular design. We explore key generative architectures, including variational autoencoders, generative adversarial networks, and transformer-based models, highlighting their unique contributions to drug discovery. Additionally, we discuss critical advancements such as reinforcement learning, multi-objective optimization, and the integration of domain-specific chemical knowledge, which collectively enhance molecular validity, novelty, and drug-likeness. Also, the review examines persistent challenges, including data quality limitations, model interpretability, and the need for improved objective functions, while offering insights into future research directions. By mapping the evolving landscape of GenAI-driven molecular design and providing strategic guidance for overcoming existing limitations, this review serves as an essential resource for researchers leveraging GenAI in drug discovery.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01059-4","citationCount":"0","resultStr":"{\"title\":\"Generative artificial intelligence based models optimization towards molecule design enhancement\",\"authors\":\"Tarek Khater,&nbsp;Sara Awni Alkhatib,&nbsp;Aamna AlShehhi,&nbsp;Charalampos Pitsalidis,&nbsp;Anna Maria Pappa,&nbsp;Son Tung Ngo,&nbsp;Vincent Chan,&nbsp;Vi Khanh Truong\",\"doi\":\"10.1186/s13321-025-01059-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Generative artificial intelligence (GenAI) models have emerged as a transformative tool for addressing the complex challenges of drug discovery, enabling the design of structurally diverse, chemically valid, and functionally relevant molecules. Despite significant advancements, the rapid expansion of GenAI applications still faces challenges related to prediction accuracy, molecular validity, and optimization for drug-like properties. This review provides a comprehensive analysis of recent techniques and strategies aimed at enhancing the performance of GenAI models in molecular design. We explore key generative architectures, including variational autoencoders, generative adversarial networks, and transformer-based models, highlighting their unique contributions to drug discovery. Additionally, we discuss critical advancements such as reinforcement learning, multi-objective optimization, and the integration of domain-specific chemical knowledge, which collectively enhance molecular validity, novelty, and drug-likeness. Also, the review examines persistent challenges, including data quality limitations, model interpretability, and the need for improved objective functions, while offering insights into future research directions. By mapping the evolving landscape of GenAI-driven molecular design and providing strategic guidance for overcoming existing limitations, this review serves as an essential resource for researchers leveraging GenAI in drug discovery.</p></div>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01059-4\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-025-01059-4\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-01059-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

生成式人工智能(GenAI)模型已经成为解决药物发现复杂挑战的变革性工具,使设计结构多样化、化学有效和功能相关的分子成为可能。尽管取得了重大进展,但GenAI应用的快速扩展仍然面临着与预测准确性、分子有效性和药物样性质优化相关的挑战。本文综述了旨在提高GenAI模型在分子设计中的性能的最新技术和策略的综合分析。我们探索了关键的生成架构,包括变分自编码器、生成对抗网络和基于变压器的模型,强调了它们对药物发现的独特贡献。此外,我们还讨论了诸如强化学习、多目标优化和特定领域化学知识的整合等关键进展,这些进展共同提高了分子有效性、新颖性和药物相似性。此外,该综述还探讨了持续存在的挑战,包括数据质量限制,模型可解释性以及改进目标函数的需求,同时为未来的研究方向提供了见解。通过绘制基因ai驱动分子设计的发展图景,并为克服现有局限性提供战略指导,本综述为研究人员利用基因ai进行药物发现提供了重要资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generative artificial intelligence based models optimization towards molecule design enhancement

Generative artificial intelligence (GenAI) models have emerged as a transformative tool for addressing the complex challenges of drug discovery, enabling the design of structurally diverse, chemically valid, and functionally relevant molecules. Despite significant advancements, the rapid expansion of GenAI applications still faces challenges related to prediction accuracy, molecular validity, and optimization for drug-like properties. This review provides a comprehensive analysis of recent techniques and strategies aimed at enhancing the performance of GenAI models in molecular design. We explore key generative architectures, including variational autoencoders, generative adversarial networks, and transformer-based models, highlighting their unique contributions to drug discovery. Additionally, we discuss critical advancements such as reinforcement learning, multi-objective optimization, and the integration of domain-specific chemical knowledge, which collectively enhance molecular validity, novelty, and drug-likeness. Also, the review examines persistent challenges, including data quality limitations, model interpretability, and the need for improved objective functions, while offering insights into future research directions. By mapping the evolving landscape of GenAI-driven molecular design and providing strategic guidance for overcoming existing limitations, this review serves as an essential resource for researchers leveraging GenAI in drug discovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信