Samantha Y Liu, Max P M Hulsman, Philipp Leyendecker, Eugena Chang, Katherine A Donovan, Fabian Strobel, James Dougan, Eric S Fischer, Michael Dougan, Stephanie K Dougan, Li Qiang
{"title":"SMAC模拟物诱导人巨噬细胞吞噬活的癌细胞。","authors":"Samantha Y Liu, Max P M Hulsman, Philipp Leyendecker, Eugena Chang, Katherine A Donovan, Fabian Strobel, James Dougan, Eric S Fischer, Michael Dougan, Stephanie K Dougan, Li Qiang","doi":"10.1093/immadv/ltaf026","DOIUrl":null,"url":null,"abstract":"<p><p>Macrophages engulf apoptotic bodies and cellular debris as part of homeostasis, but they can also phagocytose live cells, such as aged red blood cells. Pharmacologic reprogramming with the SMAC mimetic LCL161 in combination with T-cell-derived cytokines can induce macrophages to phagocytose live cancer cells in mouse models. Here we extend these findings to encompass a wide range of monovalent and bivalent SMAC mimetic compounds, demonstrating that live cell phagocytosis is a class effect of these agents. We demonstrate robust phagocytosis of live pancreatic and breast cancer cells by primary human macrophages across a range of healthy donors. Unlike mouse macrophages, where a combination of SMAC mimetics with lymphotoxin enhanced phagocytosis, human macrophages were more efficiently polarized to phagocytose live cells by the combination of SMAC mimetics and IFNg. We profiled phagocytic macrophages by transcriptional and proteomic methodologies, uncovering a positive feedback loop of autocrine TNFa production.</p>","PeriodicalId":73353,"journal":{"name":"Immunotherapy advances","volume":"5 1","pages":"ltaf026"},"PeriodicalIF":4.9000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314603/pdf/","citationCount":"0","resultStr":"{\"title\":\"SMAC mimetics induce human macrophages to phagocytose live cancer cells.\",\"authors\":\"Samantha Y Liu, Max P M Hulsman, Philipp Leyendecker, Eugena Chang, Katherine A Donovan, Fabian Strobel, James Dougan, Eric S Fischer, Michael Dougan, Stephanie K Dougan, Li Qiang\",\"doi\":\"10.1093/immadv/ltaf026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Macrophages engulf apoptotic bodies and cellular debris as part of homeostasis, but they can also phagocytose live cells, such as aged red blood cells. Pharmacologic reprogramming with the SMAC mimetic LCL161 in combination with T-cell-derived cytokines can induce macrophages to phagocytose live cancer cells in mouse models. Here we extend these findings to encompass a wide range of monovalent and bivalent SMAC mimetic compounds, demonstrating that live cell phagocytosis is a class effect of these agents. We demonstrate robust phagocytosis of live pancreatic and breast cancer cells by primary human macrophages across a range of healthy donors. Unlike mouse macrophages, where a combination of SMAC mimetics with lymphotoxin enhanced phagocytosis, human macrophages were more efficiently polarized to phagocytose live cells by the combination of SMAC mimetics and IFNg. We profiled phagocytic macrophages by transcriptional and proteomic methodologies, uncovering a positive feedback loop of autocrine TNFa production.</p>\",\"PeriodicalId\":73353,\"journal\":{\"name\":\"Immunotherapy advances\",\"volume\":\"5 1\",\"pages\":\"ltaf026\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314603/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunotherapy advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/immadv/ltaf026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunotherapy advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/immadv/ltaf026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
SMAC mimetics induce human macrophages to phagocytose live cancer cells.
Macrophages engulf apoptotic bodies and cellular debris as part of homeostasis, but they can also phagocytose live cells, such as aged red blood cells. Pharmacologic reprogramming with the SMAC mimetic LCL161 in combination with T-cell-derived cytokines can induce macrophages to phagocytose live cancer cells in mouse models. Here we extend these findings to encompass a wide range of monovalent and bivalent SMAC mimetic compounds, demonstrating that live cell phagocytosis is a class effect of these agents. We demonstrate robust phagocytosis of live pancreatic and breast cancer cells by primary human macrophages across a range of healthy donors. Unlike mouse macrophages, where a combination of SMAC mimetics with lymphotoxin enhanced phagocytosis, human macrophages were more efficiently polarized to phagocytose live cells by the combination of SMAC mimetics and IFNg. We profiled phagocytic macrophages by transcriptional and proteomic methodologies, uncovering a positive feedback loop of autocrine TNFa production.