非零配对的平均场费米系统动力学。

IF 1.3 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Stefano Marcantoni, Marcello Porta, Julien Sabin
{"title":"非零配对的平均场费米系统动力学。","authors":"Stefano Marcantoni,&nbsp;Marcello Porta,&nbsp;Julien Sabin","doi":"10.1007/s00023-024-01473-8","DOIUrl":null,"url":null,"abstract":"<div><p>We study the dynamics of many-body Fermi systems, for a class of initial data which are close to quasi-free states exhibiting a nonvanishing pairing matrix. We focus on the mean-field scaling, which for fermionic systems is naturally coupled with a semiclassical scaling. Under the assumption that the initial datum enjoys a suitable semiclassical structure, we give a rigorous derivation of the time-dependent Hartree-Fock-Bogoliubov equation, a nonlinear effective evolution equation for the generalized one-particle density matrix of the system, as the number of particles goes to infinity. Our result holds for all macroscopic times, and provides bounds for the rate of convergence.\n</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"26 8","pages":"2901 - 2954"},"PeriodicalIF":1.3000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12313753/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dynamics of Mean-Field Fermi Systems with Nonzero Pairing\",\"authors\":\"Stefano Marcantoni,&nbsp;Marcello Porta,&nbsp;Julien Sabin\",\"doi\":\"10.1007/s00023-024-01473-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the dynamics of many-body Fermi systems, for a class of initial data which are close to quasi-free states exhibiting a nonvanishing pairing matrix. We focus on the mean-field scaling, which for fermionic systems is naturally coupled with a semiclassical scaling. Under the assumption that the initial datum enjoys a suitable semiclassical structure, we give a rigorous derivation of the time-dependent Hartree-Fock-Bogoliubov equation, a nonlinear effective evolution equation for the generalized one-particle density matrix of the system, as the number of particles goes to infinity. Our result holds for all macroscopic times, and provides bounds for the rate of convergence.\\n</p></div>\",\"PeriodicalId\":463,\"journal\":{\"name\":\"Annales Henri Poincaré\",\"volume\":\"26 8\",\"pages\":\"2901 - 2954\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12313753/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Poincaré\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00023-024-01473-8\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-024-01473-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了多体费米系统的动力学,这类初始数据接近准自由状态,显示出一个不消失的配对矩阵。我们关注的是平均场标度,对于费米子系统来说,平均场标度与半经典标度是自然耦合的。在假设初始基准具有合适的半经典结构的前提下,我们给出了随时间变化的Hartree-Fock-Bogoliubov方程的严格推导。Hartree-Fock-Bogoliubov方程是系统的广义单粒子密度矩阵的非线性有效演化方程,当粒子数趋于无穷时。我们的结果适用于所有宏观时间,并提供了收敛速度的界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics of Mean-Field Fermi Systems with Nonzero Pairing

We study the dynamics of many-body Fermi systems, for a class of initial data which are close to quasi-free states exhibiting a nonvanishing pairing matrix. We focus on the mean-field scaling, which for fermionic systems is naturally coupled with a semiclassical scaling. Under the assumption that the initial datum enjoys a suitable semiclassical structure, we give a rigorous derivation of the time-dependent Hartree-Fock-Bogoliubov equation, a nonlinear effective evolution equation for the generalized one-particle density matrix of the system, as the number of particles goes to infinity. Our result holds for all macroscopic times, and provides bounds for the rate of convergence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信