Marshall S Sussman, Lumeng Cui, Stephanie B M Tan, Shopnil Prasla, Tanya Wah-Kahn, Dominik Nickel, Kartik S Jhaveri
{"title":"骨盆T2加权涡旋回波成像的深度学习重建:与标准T2加权TSE成像在图像质量、病变描述和采集时间方面的前瞻性比较","authors":"Marshall S Sussman, Lumeng Cui, Stephanie B M Tan, Shopnil Prasla, Tanya Wah-Kahn, Dominik Nickel, Kartik S Jhaveri","doi":"10.1177/08465371251357790","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>In pelvic MRI, Turbo Spin Echo (TSE) pulse sequences are used for T2-weighted imaging. However, its lengthy acquisition time increases the potential for artifacts. Deep learning (DL) reconstruction achieves reduced scan times without the degradation in image quality associated with other accelerated techniques. Unfortunately, a comprehensive assessment of DL-reconstruction in pelvic MRI has not been performed. The objective of this prospective study was to compare the performance of DL-TSE and conventional TSE pulse sequences in a broad spectrum of pelvic MRI indications.</p><p><strong>Methods: </strong>Fifty-five subjects (33 females and 22 males) were scanned at 3 T using DL-TSE and conventional TSE sequences in axial and/or oblique acquisition planes. Two radiologists independently assessed image quality in 6 categories: edge definition, vessel margin sharpness, T2 Contrast Dynamic Range, artifacts, overall image quality, and lesion features. The contrast ratio was calculated for quantitative assessment. A two-tailed sign test was used for assessment.</p><p><strong>Results: </strong>The 2 readers found DL-TSE to deliver equal or superior image quality than conventional TSE in most cases. There were only 3 instances out of 24 where conventional TSE was scored as providing better image quality. Readers agreed on DL-TSE superiority/inferiority/equivalence in 67% of categories in the axial plane and 75% in the oblique plane. DL-TSE also demonstrated a better contrast ratio in 75% of cases. DL-TSE reduced scan time by approximately 50%.</p><p><strong>Conclusion: </strong>DL-accelerated TSE sequences generally provide equal or better image quality in pelvic MRI than standard TSE with significantly reduced acquisition times.</p>","PeriodicalId":55290,"journal":{"name":"Canadian Association of Radiologists Journal-Journal De L Association Canadienne Des Radiologistes","volume":" ","pages":"8465371251357790"},"PeriodicalIF":3.7000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Reconstruction for T2 Weighted Turbo-Spin-Echo Imaging of the Pelvis: Prospective Comparison With Standard T2-Weighted TSE Imaging With Respect to Image Quality, Lesion Depiction, and Acquisition Time.\",\"authors\":\"Marshall S Sussman, Lumeng Cui, Stephanie B M Tan, Shopnil Prasla, Tanya Wah-Kahn, Dominik Nickel, Kartik S Jhaveri\",\"doi\":\"10.1177/08465371251357790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>In pelvic MRI, Turbo Spin Echo (TSE) pulse sequences are used for T2-weighted imaging. However, its lengthy acquisition time increases the potential for artifacts. Deep learning (DL) reconstruction achieves reduced scan times without the degradation in image quality associated with other accelerated techniques. Unfortunately, a comprehensive assessment of DL-reconstruction in pelvic MRI has not been performed. The objective of this prospective study was to compare the performance of DL-TSE and conventional TSE pulse sequences in a broad spectrum of pelvic MRI indications.</p><p><strong>Methods: </strong>Fifty-five subjects (33 females and 22 males) were scanned at 3 T using DL-TSE and conventional TSE sequences in axial and/or oblique acquisition planes. Two radiologists independently assessed image quality in 6 categories: edge definition, vessel margin sharpness, T2 Contrast Dynamic Range, artifacts, overall image quality, and lesion features. The contrast ratio was calculated for quantitative assessment. A two-tailed sign test was used for assessment.</p><p><strong>Results: </strong>The 2 readers found DL-TSE to deliver equal or superior image quality than conventional TSE in most cases. There were only 3 instances out of 24 where conventional TSE was scored as providing better image quality. Readers agreed on DL-TSE superiority/inferiority/equivalence in 67% of categories in the axial plane and 75% in the oblique plane. DL-TSE also demonstrated a better contrast ratio in 75% of cases. DL-TSE reduced scan time by approximately 50%.</p><p><strong>Conclusion: </strong>DL-accelerated TSE sequences generally provide equal or better image quality in pelvic MRI than standard TSE with significantly reduced acquisition times.</p>\",\"PeriodicalId\":55290,\"journal\":{\"name\":\"Canadian Association of Radiologists Journal-Journal De L Association Canadienne Des Radiologistes\",\"volume\":\" \",\"pages\":\"8465371251357790\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Association of Radiologists Journal-Journal De L Association Canadienne Des Radiologistes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/08465371251357790\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Association of Radiologists Journal-Journal De L Association Canadienne Des Radiologistes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08465371251357790","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Deep Learning Reconstruction for T2 Weighted Turbo-Spin-Echo Imaging of the Pelvis: Prospective Comparison With Standard T2-Weighted TSE Imaging With Respect to Image Quality, Lesion Depiction, and Acquisition Time.
Purpose: In pelvic MRI, Turbo Spin Echo (TSE) pulse sequences are used for T2-weighted imaging. However, its lengthy acquisition time increases the potential for artifacts. Deep learning (DL) reconstruction achieves reduced scan times without the degradation in image quality associated with other accelerated techniques. Unfortunately, a comprehensive assessment of DL-reconstruction in pelvic MRI has not been performed. The objective of this prospective study was to compare the performance of DL-TSE and conventional TSE pulse sequences in a broad spectrum of pelvic MRI indications.
Methods: Fifty-five subjects (33 females and 22 males) were scanned at 3 T using DL-TSE and conventional TSE sequences in axial and/or oblique acquisition planes. Two radiologists independently assessed image quality in 6 categories: edge definition, vessel margin sharpness, T2 Contrast Dynamic Range, artifacts, overall image quality, and lesion features. The contrast ratio was calculated for quantitative assessment. A two-tailed sign test was used for assessment.
Results: The 2 readers found DL-TSE to deliver equal or superior image quality than conventional TSE in most cases. There were only 3 instances out of 24 where conventional TSE was scored as providing better image quality. Readers agreed on DL-TSE superiority/inferiority/equivalence in 67% of categories in the axial plane and 75% in the oblique plane. DL-TSE also demonstrated a better contrast ratio in 75% of cases. DL-TSE reduced scan time by approximately 50%.
Conclusion: DL-accelerated TSE sequences generally provide equal or better image quality in pelvic MRI than standard TSE with significantly reduced acquisition times.
期刊介绍:
The Canadian Association of Radiologists Journal is a peer-reviewed, Medline-indexed publication that presents a broad scientific review of radiology in Canada. The Journal covers such topics as abdominal imaging, cardiovascular radiology, computed tomography, continuing professional development, education and training, gastrointestinal radiology, health policy and practice, magnetic resonance imaging, musculoskeletal radiology, neuroradiology, nuclear medicine, pediatric radiology, radiology history, radiology practice guidelines and advisories, thoracic and cardiac imaging, trauma and emergency room imaging, ultrasonography, and vascular and interventional radiology. Article types considered for publication include original research articles, critically appraised topics, review articles, guest editorials, pictorial essays, technical notes, and letter to the Editor.