ABB定理:无限维的结果和限制。

IF 1.5 3区 数学 Q2 MATHEMATICS, APPLIED
Aris Daniilidis, Carlo Alberto De Bernardi, Enrico Miglierina
{"title":"ABB定理:无限维的结果和限制。","authors":"Aris Daniilidis, Carlo Alberto De Bernardi, Enrico Miglierina","doi":"10.1007/s10957-025-02797-z","DOIUrl":null,"url":null,"abstract":"<p><p>We construct a weakly compact convex subset of <math><msup><mi>ℓ</mi> <mn>2</mn></msup> </math> with nonempty interior that has an isolated maximal element, with respect to the lattice order  <math><msubsup><mi>ℓ</mi> <mrow><mo>+</mo></mrow> <mn>2</mn></msubsup> </math> . Moreover, the maximal point cannot be supported by any strictly positive functional, which shows that the Arrow-Barankin-Blackwell theorem fails. This example discloses the pertinence of the assumption that the cone has a bounded base for the validity of the result in infinite dimensions. Under this latter assumption, the equivalence of the notions of strict maximality and maximality is established.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"207 2","pages":"38"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12316784/pdf/","citationCount":"0","resultStr":"{\"title\":\"ABB Theorems: Results and Limitations in Infinite Dimensions.\",\"authors\":\"Aris Daniilidis, Carlo Alberto De Bernardi, Enrico Miglierina\",\"doi\":\"10.1007/s10957-025-02797-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We construct a weakly compact convex subset of <math><msup><mi>ℓ</mi> <mn>2</mn></msup> </math> with nonempty interior that has an isolated maximal element, with respect to the lattice order  <math><msubsup><mi>ℓ</mi> <mrow><mo>+</mo></mrow> <mn>2</mn></msubsup> </math> . Moreover, the maximal point cannot be supported by any strictly positive functional, which shows that the Arrow-Barankin-Blackwell theorem fails. This example discloses the pertinence of the assumption that the cone has a bounded base for the validity of the result in infinite dimensions. Under this latter assumption, the equivalence of the notions of strict maximality and maximality is established.</p>\",\"PeriodicalId\":50100,\"journal\":{\"name\":\"Journal of Optimization Theory and Applications\",\"volume\":\"207 2\",\"pages\":\"38\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12316784/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optimization Theory and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10957-025-02797-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-025-02797-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们构造了一个关于格阶(n + 2)的具有孤立极大元的非空内部的弱紧凸子集。此外,极大点不能被任何严格正泛函所支持,这表明Arrow-Barankin-Blackwell定理是不成立的。这个例子揭示了圆锥有一个有界底的假设对于结果在无限维上的有效性的相关性。在后一种假设下,建立了严格极大性和极大性概念的等价性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

ABB Theorems: Results and Limitations in Infinite Dimensions.

ABB Theorems: Results and Limitations in Infinite Dimensions.

ABB Theorems: Results and Limitations in Infinite Dimensions.

We construct a weakly compact convex subset of 2 with nonempty interior that has an isolated maximal element, with respect to the lattice order  + 2 . Moreover, the maximal point cannot be supported by any strictly positive functional, which shows that the Arrow-Barankin-Blackwell theorem fails. This example discloses the pertinence of the assumption that the cone has a bounded base for the validity of the result in infinite dimensions. Under this latter assumption, the equivalence of the notions of strict maximality and maximality is established.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
149
审稿时长
9.9 months
期刊介绍: The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信