Vera Schmiedhofer, Julian Sommersguter-Wagner, Oskar Knittelfelder, Helmut Jungwirth, Gerald N Rechberger, Didac Carmona-Gutierrez, Patrick Rockenfeller, Christoph Ruckenstuhl, Frank Madeo
{"title":"糖通过神经酰胺加速酵母的时间老化。","authors":"Vera Schmiedhofer, Julian Sommersguter-Wagner, Oskar Knittelfelder, Helmut Jungwirth, Gerald N Rechberger, Didac Carmona-Gutierrez, Patrick Rockenfeller, Christoph Ruckenstuhl, Frank Madeo","doi":"10.15698/cst2025.07.308","DOIUrl":null,"url":null,"abstract":"<p><p>High carbohydrate intake, a characteristic of many Western diets, is a major contributor to age-associated pathologies. Here, we explored the molecular consequences of sugar overload during chronological aging in the yeast <i>Saccharomyces cerevisiae</i>. High levels of glucose and fructose resulted in a decrease of chronological lifespan as well as an increase of cell death, ROS and neutral lipids. Interestingly, these changes were accompanied by significantly altered ceramide profiles. Deletion of either the kinase Tor1, a master regulator of growth and autophagy in response to nutrients, or the vacuole-anchored receptor Vac8, an important player in various autophagy pathways, improved survival and normalized ceramide profiles. This suggests that ceramides might play a role in sugar stress-induced cell death. In line, pharmacological inhibition of sphingolipid synthesis normalized ceramide profiles and improved chronological lifespan, whereas pharmacologically induced ceramide accumulation decreased chronological lifespan. In sum, our findings causally link nutrient signaling and an altered ceramide profile to sugar cytotoxicity in aging yeast, providing a basis for further search of feasible interventions against sugar-induced cell death.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"9 ","pages":"158-173"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12318584/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sugar accelerates chronological aging in yeast via ceramides.\",\"authors\":\"Vera Schmiedhofer, Julian Sommersguter-Wagner, Oskar Knittelfelder, Helmut Jungwirth, Gerald N Rechberger, Didac Carmona-Gutierrez, Patrick Rockenfeller, Christoph Ruckenstuhl, Frank Madeo\",\"doi\":\"10.15698/cst2025.07.308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High carbohydrate intake, a characteristic of many Western diets, is a major contributor to age-associated pathologies. Here, we explored the molecular consequences of sugar overload during chronological aging in the yeast <i>Saccharomyces cerevisiae</i>. High levels of glucose and fructose resulted in a decrease of chronological lifespan as well as an increase of cell death, ROS and neutral lipids. Interestingly, these changes were accompanied by significantly altered ceramide profiles. Deletion of either the kinase Tor1, a master regulator of growth and autophagy in response to nutrients, or the vacuole-anchored receptor Vac8, an important player in various autophagy pathways, improved survival and normalized ceramide profiles. This suggests that ceramides might play a role in sugar stress-induced cell death. In line, pharmacological inhibition of sphingolipid synthesis normalized ceramide profiles and improved chronological lifespan, whereas pharmacologically induced ceramide accumulation decreased chronological lifespan. In sum, our findings causally link nutrient signaling and an altered ceramide profile to sugar cytotoxicity in aging yeast, providing a basis for further search of feasible interventions against sugar-induced cell death.</p>\",\"PeriodicalId\":36371,\"journal\":{\"name\":\"Cell Stress\",\"volume\":\"9 \",\"pages\":\"158-173\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12318584/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Stress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15698/cst2025.07.308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Stress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15698/cst2025.07.308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Sugar accelerates chronological aging in yeast via ceramides.
High carbohydrate intake, a characteristic of many Western diets, is a major contributor to age-associated pathologies. Here, we explored the molecular consequences of sugar overload during chronological aging in the yeast Saccharomyces cerevisiae. High levels of glucose and fructose resulted in a decrease of chronological lifespan as well as an increase of cell death, ROS and neutral lipids. Interestingly, these changes were accompanied by significantly altered ceramide profiles. Deletion of either the kinase Tor1, a master regulator of growth and autophagy in response to nutrients, or the vacuole-anchored receptor Vac8, an important player in various autophagy pathways, improved survival and normalized ceramide profiles. This suggests that ceramides might play a role in sugar stress-induced cell death. In line, pharmacological inhibition of sphingolipid synthesis normalized ceramide profiles and improved chronological lifespan, whereas pharmacologically induced ceramide accumulation decreased chronological lifespan. In sum, our findings causally link nutrient signaling and an altered ceramide profile to sugar cytotoxicity in aging yeast, providing a basis for further search of feasible interventions against sugar-induced cell death.
Cell StressBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
13.50
自引率
0.00%
发文量
21
审稿时长
15 weeks
期刊介绍:
Cell Stress is an open-access, peer-reviewed journal that is dedicated to publishing highly relevant research in the field of cellular pathology. The journal focuses on advancing our understanding of the molecular, mechanistic, phenotypic, and other critical aspects that underpin cellular dysfunction and disease. It specifically aims to foster cell biology research that is applicable to a range of significant human diseases, including neurodegenerative disorders, myopathies, mitochondriopathies, infectious diseases, cancer, and pathological aging.
The scope of Cell Stress is broad, welcoming submissions that represent a spectrum of research from fundamental to translational and clinical studies. The journal is a valuable resource for scientists, educators, and policymakers worldwide, as well as for any individual with an interest in cellular pathology. It serves as a platform for the dissemination of research findings that are instrumental in the investigation, classification, diagnosis, and therapeutic management of major diseases. By being open-access, Cell Stress ensures that its content is freely available to a global audience, thereby promoting international scientific collaboration and accelerating the exchange of knowledge within the research community.