随机游走空间上扰动1-拉普拉斯算子的演化问题。

IF 1.4 2区 数学 Q1 MATHEMATICS
Mathematische Annalen Pub Date : 2025-01-01 Epub Date: 2025-05-21 DOI:10.1007/s00208-025-03180-z
W Górny, J M Mazón, J Toledo
{"title":"随机游走空间上扰动1-拉普拉斯算子的演化问题。","authors":"W Górny, J M Mazón, J Toledo","doi":"10.1007/s00208-025-03180-z","DOIUrl":null,"url":null,"abstract":"<p><p>Random walk spaces are a general framework for the study of PDEs. They include as particular cases locally finite weighted connected graphs and nonlocal settings involving symmetric integrable kernels on <math> <msup><mrow><mi>R</mi></mrow> <mi>N</mi></msup> </math> . We are interested in the study of evolution problems involving two random walk structures so that the associated functionals have different growth on each structure. We also deal with the case of a functional with different growth on a partition of the random walk.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"392 3","pages":"3895-3957"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12310885/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evolution problems with perturbed 1-Laplacian type operators on random walk spaces.\",\"authors\":\"W Górny, J M Mazón, J Toledo\",\"doi\":\"10.1007/s00208-025-03180-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Random walk spaces are a general framework for the study of PDEs. They include as particular cases locally finite weighted connected graphs and nonlocal settings involving symmetric integrable kernels on <math> <msup><mrow><mi>R</mi></mrow> <mi>N</mi></msup> </math> . We are interested in the study of evolution problems involving two random walk structures so that the associated functionals have different growth on each structure. We also deal with the case of a functional with different growth on a partition of the random walk.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"392 3\",\"pages\":\"3895-3957\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12310885/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-025-03180-z\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-025-03180-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

随机行走空间是研究偏微分方程的一般框架。它们包括局部有限加权连通图和涉及rn上对称可积核的非局部集合。我们感兴趣的是研究涉及两个随机游走结构的进化问题,使得相关的函数在每个结构上具有不同的生长。我们还处理了在随机漫步的分区上具有不同生长的泛函的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Evolution problems with perturbed 1-Laplacian type operators on random walk spaces.

Evolution problems with perturbed 1-Laplacian type operators on random walk spaces.

Evolution problems with perturbed 1-Laplacian type operators on random walk spaces.

Evolution problems with perturbed 1-Laplacian type operators on random walk spaces.

Random walk spaces are a general framework for the study of PDEs. They include as particular cases locally finite weighted connected graphs and nonlocal settings involving symmetric integrable kernels on R N . We are interested in the study of evolution problems involving two random walk structures so that the associated functionals have different growth on each structure. We also deal with the case of a functional with different growth on a partition of the random walk.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信