{"title":"饮食中暴露于亚硝酸盐通过增强整合素α M使MRL/lpr小鼠狼疮恶化。","authors":"Yiwu Qiu, Qingyi Zhang, Xueting Yang, Chengping Wen, Zhixing He, Mingzhu Wang","doi":"10.1007/s10753-025-02347-9","DOIUrl":null,"url":null,"abstract":"<p><p>There is a recognized longitudinal association between serum nitrogen oxides levels and disease activity in lupus nephritis. Recently, increased exposure to high levels of nitrite has raised significant concerns, though its impact on lupus pathogenesis has not been fully elucidated. Using the MRL/lpr spontaneous lupus model, we employed integrated immunological and transcriptomic approaches to investigate nitrite's effects. Flow cytometry revealed significant elevations in splenic double negative T (DN T) cells, T follicular helper (Tfh) cells, and plasma cells following nitrite intervention, along with a reduction in splenic regulatory T (Treg) cells. ELISA quantification revealed elevated serum anti-double-stranded DNA antibodies (anti-dsDNA), antinuclear antibodies (ANA), and pro-inflammatory cytokines (IL-12p70, TNF-α), correlating with aggravated renal pathology in nitrite-exposed mice. Transcriptome analysis further revealed significant gene expression changes in both spleen and kidney tissues associated with nitrite exposure. Notably, three KEGG pathways, cell adhesion molecules, osteoclast differentiation, and B cell receptor signaling pathway, were consistently enriched in both the spleen and kidney transcriptomes. Subsequent western blot analysis identified that the Itgam (integrin alpha M)-related cell adhesion molecule pathway potentially mediated the mechanism by which nitrite aggravated lupus in MRL/lpr mice. To explore this mechanism, the integrin antagonist lifitegrast was used to inhibit the expression of Itgam in the nitrite-exposed MRL/lpr mice, resulting in attenuation of nitrite-induced lupus exacerbation. Collectively, these findings suggested that nitrite exposure could aggravate lupus by promoting Itgam expression.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exposure to Dietary Nitrite Exacerbates Lupus in MRL/lpr Mice by Enhancing Integrin Alpha M.\",\"authors\":\"Yiwu Qiu, Qingyi Zhang, Xueting Yang, Chengping Wen, Zhixing He, Mingzhu Wang\",\"doi\":\"10.1007/s10753-025-02347-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is a recognized longitudinal association between serum nitrogen oxides levels and disease activity in lupus nephritis. Recently, increased exposure to high levels of nitrite has raised significant concerns, though its impact on lupus pathogenesis has not been fully elucidated. Using the MRL/lpr spontaneous lupus model, we employed integrated immunological and transcriptomic approaches to investigate nitrite's effects. Flow cytometry revealed significant elevations in splenic double negative T (DN T) cells, T follicular helper (Tfh) cells, and plasma cells following nitrite intervention, along with a reduction in splenic regulatory T (Treg) cells. ELISA quantification revealed elevated serum anti-double-stranded DNA antibodies (anti-dsDNA), antinuclear antibodies (ANA), and pro-inflammatory cytokines (IL-12p70, TNF-α), correlating with aggravated renal pathology in nitrite-exposed mice. Transcriptome analysis further revealed significant gene expression changes in both spleen and kidney tissues associated with nitrite exposure. Notably, three KEGG pathways, cell adhesion molecules, osteoclast differentiation, and B cell receptor signaling pathway, were consistently enriched in both the spleen and kidney transcriptomes. Subsequent western blot analysis identified that the Itgam (integrin alpha M)-related cell adhesion molecule pathway potentially mediated the mechanism by which nitrite aggravated lupus in MRL/lpr mice. To explore this mechanism, the integrin antagonist lifitegrast was used to inhibit the expression of Itgam in the nitrite-exposed MRL/lpr mice, resulting in attenuation of nitrite-induced lupus exacerbation. Collectively, these findings suggested that nitrite exposure could aggravate lupus by promoting Itgam expression.</p>\",\"PeriodicalId\":13524,\"journal\":{\"name\":\"Inflammation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10753-025-02347-9\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10753-025-02347-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Exposure to Dietary Nitrite Exacerbates Lupus in MRL/lpr Mice by Enhancing Integrin Alpha M.
There is a recognized longitudinal association between serum nitrogen oxides levels and disease activity in lupus nephritis. Recently, increased exposure to high levels of nitrite has raised significant concerns, though its impact on lupus pathogenesis has not been fully elucidated. Using the MRL/lpr spontaneous lupus model, we employed integrated immunological and transcriptomic approaches to investigate nitrite's effects. Flow cytometry revealed significant elevations in splenic double negative T (DN T) cells, T follicular helper (Tfh) cells, and plasma cells following nitrite intervention, along with a reduction in splenic regulatory T (Treg) cells. ELISA quantification revealed elevated serum anti-double-stranded DNA antibodies (anti-dsDNA), antinuclear antibodies (ANA), and pro-inflammatory cytokines (IL-12p70, TNF-α), correlating with aggravated renal pathology in nitrite-exposed mice. Transcriptome analysis further revealed significant gene expression changes in both spleen and kidney tissues associated with nitrite exposure. Notably, three KEGG pathways, cell adhesion molecules, osteoclast differentiation, and B cell receptor signaling pathway, were consistently enriched in both the spleen and kidney transcriptomes. Subsequent western blot analysis identified that the Itgam (integrin alpha M)-related cell adhesion molecule pathway potentially mediated the mechanism by which nitrite aggravated lupus in MRL/lpr mice. To explore this mechanism, the integrin antagonist lifitegrast was used to inhibit the expression of Itgam in the nitrite-exposed MRL/lpr mice, resulting in attenuation of nitrite-induced lupus exacerbation. Collectively, these findings suggested that nitrite exposure could aggravate lupus by promoting Itgam expression.
期刊介绍:
Inflammation publishes the latest international advances in experimental and clinical research on the physiology, biochemistry, cell biology, and pharmacology of inflammation. Contributions include full-length scientific reports, short definitive articles, and papers from meetings and symposia proceedings. The journal''s coverage includes acute and chronic inflammation; mediators of inflammation; mechanisms of tissue injury and cytotoxicity; pharmacology of inflammation; and clinical studies of inflammation and its modification.