重新激活昼夜节律作为一种治疗策略:来自基础研究的见解。

IF 1.7 4区 医学 Q3 PHARMACOLOGY & PHARMACY
Masao Doi
{"title":"重新激活昼夜节律作为一种治疗策略:来自基础研究的见解。","authors":"Masao Doi","doi":"10.1248/bpb.b25-00330","DOIUrl":null,"url":null,"abstract":"<p><p>One of the most significant conceptual changes brought about by the discovery of clock genes and development of circadian-clock mutant mice is the recognition that impaired circadian rhythmicity extends its impact far beyond sleep, driving pathogenesis of a wide variety of disorders such as cancer, obesity, and hypertension. However, despite this growing clinical evidence, chronobiology still lacks a coherent answer to the converse question: can restoration of circadian rhythms ameliorate-or even reverse-such diseases? In this review, three complementary pharmacological strategies-each still in preclinical development-are explored. First, direct modulation of the transcription-translation feedback loop (TTFL)-the core gene-regulatory circuit that generates 24-h rhythms in almost all nucleated cells-is reviewed as an approach to manipulation of cellular circadian biology. Second, the suprachiasmatic nucleus (SCN)-enriched G-protein-coupled receptor Gpr176 is highlighted as a central-clock target, given its ligand-independent, G<sub>z</sub>-mediated control of cAMP signaling and demonstrated ability to reset the master pacemaker. Third, the concept of rhythmic enhancement of output function is introduced and exemplified by describing re-activation of circadian oxidized form of nicotinamide adenine dinucleotide (NAD<sup>+</sup>)-dependent 3β-hydroxy-steroid dehydrogenase (3β-HSD) activity in the meibomian gland-using nicotinamide mononucleotide (NMN)-to restore peripheral clock-driven steroidogenesis in this tissue, which leads to amelioration of meibomian gland dysfunction, a leading cause of dry eye disease. This review aims to highlight the molecular logic of each strategy; both mechanistic insights and safety/efficacy considerations are discussed.</p>","PeriodicalId":8955,"journal":{"name":"Biological & pharmaceutical bulletin","volume":"48 8","pages":"1165-1171"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reactivating Circadian Rhythms as a Therapeutic Strategy: Insights from Basic Research.\",\"authors\":\"Masao Doi\",\"doi\":\"10.1248/bpb.b25-00330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>One of the most significant conceptual changes brought about by the discovery of clock genes and development of circadian-clock mutant mice is the recognition that impaired circadian rhythmicity extends its impact far beyond sleep, driving pathogenesis of a wide variety of disorders such as cancer, obesity, and hypertension. However, despite this growing clinical evidence, chronobiology still lacks a coherent answer to the converse question: can restoration of circadian rhythms ameliorate-or even reverse-such diseases? In this review, three complementary pharmacological strategies-each still in preclinical development-are explored. First, direct modulation of the transcription-translation feedback loop (TTFL)-the core gene-regulatory circuit that generates 24-h rhythms in almost all nucleated cells-is reviewed as an approach to manipulation of cellular circadian biology. Second, the suprachiasmatic nucleus (SCN)-enriched G-protein-coupled receptor Gpr176 is highlighted as a central-clock target, given its ligand-independent, G<sub>z</sub>-mediated control of cAMP signaling and demonstrated ability to reset the master pacemaker. Third, the concept of rhythmic enhancement of output function is introduced and exemplified by describing re-activation of circadian oxidized form of nicotinamide adenine dinucleotide (NAD<sup>+</sup>)-dependent 3β-hydroxy-steroid dehydrogenase (3β-HSD) activity in the meibomian gland-using nicotinamide mononucleotide (NMN)-to restore peripheral clock-driven steroidogenesis in this tissue, which leads to amelioration of meibomian gland dysfunction, a leading cause of dry eye disease. This review aims to highlight the molecular logic of each strategy; both mechanistic insights and safety/efficacy considerations are discussed.</p>\",\"PeriodicalId\":8955,\"journal\":{\"name\":\"Biological & pharmaceutical bulletin\",\"volume\":\"48 8\",\"pages\":\"1165-1171\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological & pharmaceutical bulletin\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1248/bpb.b25-00330\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological & pharmaceutical bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/bpb.b25-00330","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

生物钟基因的发现和生物钟突变小鼠的发展所带来的最重要的概念变化之一是认识到昼夜节律受损的影响远远超出了睡眠,驱动了各种疾病的发病机制,如癌症、肥胖和高血压。然而,尽管有越来越多的临床证据,时间生物学仍然对相反的问题缺乏一个连贯的答案:恢复昼夜节律能改善甚至逆转这些疾病吗?在这篇综述中,三种互补的药理学策略-每个仍在临床前开发-被探索。首先,直接调节转录-翻译反馈回路(TTFL)——在几乎所有有核细胞中产生24小时节律的核心基因调控回路——是一种操纵细胞昼夜生物学的方法。其次,视交叉上核(SCN)富集的g蛋白偶联受体Gpr176被强调为一个中央时钟靶点,因为它具有与配体无关的、gz介导的cAMP信号控制,并且具有重置主起搏器的能力。第三,引入了节律性增强输出功能的概念,并通过描述黑黑腺中昼夜氧化形式的烟酰胺腺嘌呤二核苷酸(NAD+)依赖的3β-羟基类固醇脱氢酶(3β-HSD)活性的再激活来举例说明,使用烟酰胺单核苷酸(NMN)来恢复该组织中外周时钟驱动的类固醇生成,从而改善黑黑腺功能障碍,这是干眼病的主要原因。这篇综述旨在强调每种策略的分子逻辑;讨论了机理见解和安全性/有效性考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reactivating Circadian Rhythms as a Therapeutic Strategy: Insights from Basic Research.

One of the most significant conceptual changes brought about by the discovery of clock genes and development of circadian-clock mutant mice is the recognition that impaired circadian rhythmicity extends its impact far beyond sleep, driving pathogenesis of a wide variety of disorders such as cancer, obesity, and hypertension. However, despite this growing clinical evidence, chronobiology still lacks a coherent answer to the converse question: can restoration of circadian rhythms ameliorate-or even reverse-such diseases? In this review, three complementary pharmacological strategies-each still in preclinical development-are explored. First, direct modulation of the transcription-translation feedback loop (TTFL)-the core gene-regulatory circuit that generates 24-h rhythms in almost all nucleated cells-is reviewed as an approach to manipulation of cellular circadian biology. Second, the suprachiasmatic nucleus (SCN)-enriched G-protein-coupled receptor Gpr176 is highlighted as a central-clock target, given its ligand-independent, Gz-mediated control of cAMP signaling and demonstrated ability to reset the master pacemaker. Third, the concept of rhythmic enhancement of output function is introduced and exemplified by describing re-activation of circadian oxidized form of nicotinamide adenine dinucleotide (NAD+)-dependent 3β-hydroxy-steroid dehydrogenase (3β-HSD) activity in the meibomian gland-using nicotinamide mononucleotide (NMN)-to restore peripheral clock-driven steroidogenesis in this tissue, which leads to amelioration of meibomian gland dysfunction, a leading cause of dry eye disease. This review aims to highlight the molecular logic of each strategy; both mechanistic insights and safety/efficacy considerations are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
5.00%
发文量
247
审稿时长
2 months
期刊介绍: Biological and Pharmaceutical Bulletin (Biol. Pharm. Bull.) began publication in 1978 as the Journal of Pharmacobio-Dynamics. It covers various biological topics in the pharmaceutical and health sciences. A fourth Society journal, the Journal of Health Science, was merged with Biol. Pharm. Bull. in 2012. The main aim of the Society’s journals is to advance the pharmaceutical sciences with research reports, information exchange, and high-quality discussion. The average review time for articles submitted to the journals is around one month for first decision. The complete texts of all of the Society’s journals can be freely accessed through J-STAGE. The Society’s editorial committee hopes that the content of its journals will be useful to your research, and also invites you to submit your own work to the journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信