Yuchun Wu, Nicolas Mangold, Yang Liu, John Carter, Xing Wu, Lu Pan, Qian Huang, Chaolin Zhang, Keyi Li, Yongliao Zou
{"title":"Tyrrhena Terra蚀变的综合分析:对火星源-汇过程的启示","authors":"Yuchun Wu, Nicolas Mangold, Yang Liu, John Carter, Xing Wu, Lu Pan, Qian Huang, Chaolin Zhang, Keyi Li, Yongliao Zou","doi":"10.1029/2025JE008951","DOIUrl":null,"url":null,"abstract":"<p>Tyrrhena Terra, a region located in the cratered highlands between Hellas and Isidis Planitia on Mars, is distinguished by its extensive presence of hydrated minerals. Using 542 hyperspectral images from the Compact Reconnaissance Imaging Spectrometer for Mars, we detected 252 exposures of hydrated minerals. This region is characterized by a widespread distribution of Fe/Mg-smectites/vermiculites and chlorite, with additional detections of Al-phyllosilicates, zeolites, prehnite, hydrated silica, and carbonates. We classified the mineralogical detections in classes of impact crater diameters, locations in craters, and for those <span></span><math>\n <semantics>\n <mrow>\n <mo>></mo>\n </mrow>\n <annotation> ${ >} $</annotation>\n </semantics></math>20 km, their relative degradation stages. We found that craters <span></span><math>\n <semantics>\n <mrow>\n <mo><</mo>\n </mrow>\n <annotation> ${< } $</annotation>\n </semantics></math>10 km display a lower mineral diversity than larger ones. In contrast, craters <span></span><math>\n <semantics>\n <mrow>\n <mo>></mo>\n </mrow>\n <annotation> ${ >} $</annotation>\n </semantics></math>20 km display a high mineral diversity, especially in central peaks, suggesting a strong influence of hydrothermal processes and deep excavation. Among this diameter range, fresh, young craters exhibit a much higher mineral diversity than degraded, old craters. Fe/Mg-phyllosilicates are dominant in the latter, as well as in sedimentary units of topographically low areas. These results indicate a long-term alteration cycle in the most ancient period, where the initial, diverse hydrated minerals—formed through exhumation and/or hydrothermal circulation within large impacts—were subsequently transformed by surface weathering and/or buried, dissolved, or eroded away by other post-impact processes, then transported and deposited in lowlands by fluvial erosion. Although Tyrrhena Terra is dominated by impact-related hydrated mineral detections, our study shows that the overprint of Noachian age weathering is visible within these detections.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"130 8","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive Analysis of the Alteration of Tyrrhena Terra: Implications for Source-to-Sink Processes on Mars\",\"authors\":\"Yuchun Wu, Nicolas Mangold, Yang Liu, John Carter, Xing Wu, Lu Pan, Qian Huang, Chaolin Zhang, Keyi Li, Yongliao Zou\",\"doi\":\"10.1029/2025JE008951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Tyrrhena Terra, a region located in the cratered highlands between Hellas and Isidis Planitia on Mars, is distinguished by its extensive presence of hydrated minerals. Using 542 hyperspectral images from the Compact Reconnaissance Imaging Spectrometer for Mars, we detected 252 exposures of hydrated minerals. This region is characterized by a widespread distribution of Fe/Mg-smectites/vermiculites and chlorite, with additional detections of Al-phyllosilicates, zeolites, prehnite, hydrated silica, and carbonates. We classified the mineralogical detections in classes of impact crater diameters, locations in craters, and for those <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>></mo>\\n </mrow>\\n <annotation> ${ >} $</annotation>\\n </semantics></math>20 km, their relative degradation stages. We found that craters <span></span><math>\\n <semantics>\\n <mrow>\\n <mo><</mo>\\n </mrow>\\n <annotation> ${< } $</annotation>\\n </semantics></math>10 km display a lower mineral diversity than larger ones. In contrast, craters <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>></mo>\\n </mrow>\\n <annotation> ${ >} $</annotation>\\n </semantics></math>20 km display a high mineral diversity, especially in central peaks, suggesting a strong influence of hydrothermal processes and deep excavation. Among this diameter range, fresh, young craters exhibit a much higher mineral diversity than degraded, old craters. Fe/Mg-phyllosilicates are dominant in the latter, as well as in sedimentary units of topographically low areas. These results indicate a long-term alteration cycle in the most ancient period, where the initial, diverse hydrated minerals—formed through exhumation and/or hydrothermal circulation within large impacts—were subsequently transformed by surface weathering and/or buried, dissolved, or eroded away by other post-impact processes, then transported and deposited in lowlands by fluvial erosion. Although Tyrrhena Terra is dominated by impact-related hydrated mineral detections, our study shows that the overprint of Noachian age weathering is visible within these detections.</p>\",\"PeriodicalId\":16101,\"journal\":{\"name\":\"Journal of Geophysical Research: Planets\",\"volume\":\"130 8\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Planets\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025JE008951\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025JE008951","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Comprehensive Analysis of the Alteration of Tyrrhena Terra: Implications for Source-to-Sink Processes on Mars
Tyrrhena Terra, a region located in the cratered highlands between Hellas and Isidis Planitia on Mars, is distinguished by its extensive presence of hydrated minerals. Using 542 hyperspectral images from the Compact Reconnaissance Imaging Spectrometer for Mars, we detected 252 exposures of hydrated minerals. This region is characterized by a widespread distribution of Fe/Mg-smectites/vermiculites and chlorite, with additional detections of Al-phyllosilicates, zeolites, prehnite, hydrated silica, and carbonates. We classified the mineralogical detections in classes of impact crater diameters, locations in craters, and for those 20 km, their relative degradation stages. We found that craters 10 km display a lower mineral diversity than larger ones. In contrast, craters 20 km display a high mineral diversity, especially in central peaks, suggesting a strong influence of hydrothermal processes and deep excavation. Among this diameter range, fresh, young craters exhibit a much higher mineral diversity than degraded, old craters. Fe/Mg-phyllosilicates are dominant in the latter, as well as in sedimentary units of topographically low areas. These results indicate a long-term alteration cycle in the most ancient period, where the initial, diverse hydrated minerals—formed through exhumation and/or hydrothermal circulation within large impacts—were subsequently transformed by surface weathering and/or buried, dissolved, or eroded away by other post-impact processes, then transported and deposited in lowlands by fluvial erosion. Although Tyrrhena Terra is dominated by impact-related hydrated mineral detections, our study shows that the overprint of Noachian age weathering is visible within these detections.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.