Mingqi Lv, Ming Liu, Yan Zhao, Jianling Lu, Meng Song, Tiantian Zhu, Tieming Chen
{"title":"交通速度预测与诊断的多图关注网络","authors":"Mingqi Lv, Ming Liu, Yan Zhao, Jianling Lu, Meng Song, Tiantian Zhu, Tieming Chen","doi":"10.1049/itr2.70060","DOIUrl":null,"url":null,"abstract":"<p>Urban traffic speed prediction with high precision is the unremitting pursuit of intelligent transportation systems. The fundamental challenges of traffic speed prediction lie in the accurate modelling of the complex temporal and spatial correlations of transportation systems. Among all the methods, the hybrid “GNN + RNN” models have achieved state-of-the-art results. However, these methods still cannot address the following two challenges. First, in addition to the topology of road networks, the traffic speed could be affected by a variety of other factors, such as road functionality and weather. Second, in addition to predicting traffic speed, it is necessary to diagnose the causes of the prediction results. In this paper, we propose a multi-graph attentive network (MGAN), to predict and diagnose urban traffic speed. We create GNN model by using multiple graphs to encode the factors affecting them from various aspects. And we design a hierarchical attention mechanism to organize and pinpoint the fine-grained effects of different affecting factors for diagnosing the prediction results. The experimental results demonstrate that MGAN achieves state-of-the-art prediction performance on two real-world datasets, outperforming the strongest baseline by at least <span></span><math>\n <semantics>\n <mrow>\n <mn>5.94</mn>\n <mo>%</mo>\n </mrow>\n <annotation>$5.94\\%$</annotation>\n </semantics></math> across three prediction horizons, and is able to intuitively diagnose the prediction results.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"19 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.70060","citationCount":"0","resultStr":"{\"title\":\"A Multi-Graph Attentive Network for Traffic Speed Prediction and Diagnosis\",\"authors\":\"Mingqi Lv, Ming Liu, Yan Zhao, Jianling Lu, Meng Song, Tiantian Zhu, Tieming Chen\",\"doi\":\"10.1049/itr2.70060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Urban traffic speed prediction with high precision is the unremitting pursuit of intelligent transportation systems. The fundamental challenges of traffic speed prediction lie in the accurate modelling of the complex temporal and spatial correlations of transportation systems. Among all the methods, the hybrid “GNN + RNN” models have achieved state-of-the-art results. However, these methods still cannot address the following two challenges. First, in addition to the topology of road networks, the traffic speed could be affected by a variety of other factors, such as road functionality and weather. Second, in addition to predicting traffic speed, it is necessary to diagnose the causes of the prediction results. In this paper, we propose a multi-graph attentive network (MGAN), to predict and diagnose urban traffic speed. We create GNN model by using multiple graphs to encode the factors affecting them from various aspects. And we design a hierarchical attention mechanism to organize and pinpoint the fine-grained effects of different affecting factors for diagnosing the prediction results. The experimental results demonstrate that MGAN achieves state-of-the-art prediction performance on two real-world datasets, outperforming the strongest baseline by at least <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>5.94</mn>\\n <mo>%</mo>\\n </mrow>\\n <annotation>$5.94\\\\%$</annotation>\\n </semantics></math> across three prediction horizons, and is able to intuitively diagnose the prediction results.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.70060\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/itr2.70060\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/itr2.70060","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Multi-Graph Attentive Network for Traffic Speed Prediction and Diagnosis
Urban traffic speed prediction with high precision is the unremitting pursuit of intelligent transportation systems. The fundamental challenges of traffic speed prediction lie in the accurate modelling of the complex temporal and spatial correlations of transportation systems. Among all the methods, the hybrid “GNN + RNN” models have achieved state-of-the-art results. However, these methods still cannot address the following two challenges. First, in addition to the topology of road networks, the traffic speed could be affected by a variety of other factors, such as road functionality and weather. Second, in addition to predicting traffic speed, it is necessary to diagnose the causes of the prediction results. In this paper, we propose a multi-graph attentive network (MGAN), to predict and diagnose urban traffic speed. We create GNN model by using multiple graphs to encode the factors affecting them from various aspects. And we design a hierarchical attention mechanism to organize and pinpoint the fine-grained effects of different affecting factors for diagnosing the prediction results. The experimental results demonstrate that MGAN achieves state-of-the-art prediction performance on two real-world datasets, outperforming the strongest baseline by at least across three prediction horizons, and is able to intuitively diagnose the prediction results.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf