非共价协同定向结晶(NSDC):一种多功能高能晶体的卤素工程策略

IF 2.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
CrystEngComm Pub Date : 2025-07-16 DOI:10.1039/D5CE00606F
Cong Li, Zu-jia Lu, Chao Zhang, Mei-qi Xu, Bin-shan Zhao, Qi-yao Yu and Jian-guo Zhang
{"title":"非共价协同定向结晶(NSDC):一种多功能高能晶体的卤素工程策略","authors":"Cong Li, Zu-jia Lu, Chao Zhang, Mei-qi Xu, Bin-shan Zhao, Qi-yao Yu and Jian-guo Zhang","doi":"10.1039/D5CE00606F","DOIUrl":null,"url":null,"abstract":"<p >Achieving simultaneous optimization of energy density and safety performance remains a fundamental challenge in energetic materials science. Conventional design paradigms fail to address the cooperative regulation of weak intermolecular interactions governing crystal packing. Herein, we propose a halogen engineering strategy—noncovalent synergistic-directed crystallization (NSDC)—to decouple electronic effects from steric constraints for programmable control over solid-state architectures. Two heterocyclic systems, 1-(difluoromethyl)-5-methyl-4-nitro-1<em>H</em>-benzo[<em>d</em>][1,2,3]triazole (DFMNBT) and 3-iodo-4-nitropyrazole (INP), were designed to probe orthogonal noncovalent interaction networks. Single-crystal X-ray diffraction integrated with Hirshfeld surface analysis reveals that fluorine atoms direct antiparallel π–π stacking through dipole polarization (interlayer distance: 3.45–3.62 Å), while iodine atoms template lamellar growth <em>via</em> directional halogen bonding (I⋯O: 3.01 Å, <em>θ</em> = 178°). Density functional theory calculations indicate that, in the absence of strong hydrogen bonds between amino and nitro groups, fluorine substitution achieves high lattice energy through the synergistic effect of multiple weak interactions (111.08 <em>vs.</em> 125.71 kJ mol<small><sup>−1</sup></small> for TATB), whereas iodine incorporation constructs 3D frameworks through synergistic I⋯O halogen bonds (11.46 kJ mol<small><sup>−1</sup></small>) and halogen-π interactions, boosting lattice energy by 15.55% <em>versus</em> non-halogenated analogues. This work establishes a dual-pronged strategy for predictive engineering of multifunctional energetic crystals, resolving the long-standing energy-safety trade-off.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 31","pages":" 5346-5355"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noncovalent synergistic-directed crystallization (NSDC): a halogen engineering strategy for multifunctional energetic crystals†\",\"authors\":\"Cong Li, Zu-jia Lu, Chao Zhang, Mei-qi Xu, Bin-shan Zhao, Qi-yao Yu and Jian-guo Zhang\",\"doi\":\"10.1039/D5CE00606F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Achieving simultaneous optimization of energy density and safety performance remains a fundamental challenge in energetic materials science. Conventional design paradigms fail to address the cooperative regulation of weak intermolecular interactions governing crystal packing. Herein, we propose a halogen engineering strategy—noncovalent synergistic-directed crystallization (NSDC)—to decouple electronic effects from steric constraints for programmable control over solid-state architectures. Two heterocyclic systems, 1-(difluoromethyl)-5-methyl-4-nitro-1<em>H</em>-benzo[<em>d</em>][1,2,3]triazole (DFMNBT) and 3-iodo-4-nitropyrazole (INP), were designed to probe orthogonal noncovalent interaction networks. Single-crystal X-ray diffraction integrated with Hirshfeld surface analysis reveals that fluorine atoms direct antiparallel π–π stacking through dipole polarization (interlayer distance: 3.45–3.62 Å), while iodine atoms template lamellar growth <em>via</em> directional halogen bonding (I⋯O: 3.01 Å, <em>θ</em> = 178°). Density functional theory calculations indicate that, in the absence of strong hydrogen bonds between amino and nitro groups, fluorine substitution achieves high lattice energy through the synergistic effect of multiple weak interactions (111.08 <em>vs.</em> 125.71 kJ mol<small><sup>−1</sup></small> for TATB), whereas iodine incorporation constructs 3D frameworks through synergistic I⋯O halogen bonds (11.46 kJ mol<small><sup>−1</sup></small>) and halogen-π interactions, boosting lattice energy by 15.55% <em>versus</em> non-halogenated analogues. This work establishes a dual-pronged strategy for predictive engineering of multifunctional energetic crystals, resolving the long-standing energy-safety trade-off.</p>\",\"PeriodicalId\":70,\"journal\":{\"name\":\"CrystEngComm\",\"volume\":\" 31\",\"pages\":\" 5346-5355\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CrystEngComm\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d5ce00606f\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d5ce00606f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

实现能量密度和安全性能的同时优化仍然是高能材料科学的一个基本挑战。传统的设计范式无法解决控制晶体堆积的弱分子间相互作用的协同调节。在此,我们提出了一种卤素工程策略-非共价协同定向结晶(NSDC) -将电子效应与立体约束解耦,用于固态结构的可编程控制。设计了两个杂环体系,1-(二氟甲基)-5-甲基-4-硝基- 1h -苯并[d][1,2,3]三唑(DFMNBT)和3-碘-4-硝基吡唑(INP),以探索正交非共价相互作用网络。单晶x射线衍射结合Hirshfeld表面分析揭示氟原子通过偶极极化直接反平行π -π堆叠(层间距离:3.45-3.62 Å),而碘原子通过定向卤素键模板片层生长(I⋯O: 3.01 Å, θ = 178°)。密度泛函数理论计算表明,在氨基和硝基之间缺乏强氢键的情况下,氟取代通过多个弱相互作用的协同效应(TATB为111.08比125.71 kJ mol−1)获得了高晶格能,而碘加入通过协同I⋯O卤素键(11.46 kJ mol−1)和卤素π相互作用构建了三维框架,与非卤化类似物相比,晶格能提高了15.55%。这项工作为多功能高能晶体的预测工程建立了一个双管齐下的策略,解决了长期存在的能源安全权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Noncovalent synergistic-directed crystallization (NSDC): a halogen engineering strategy for multifunctional energetic crystals†

Noncovalent synergistic-directed crystallization (NSDC): a halogen engineering strategy for multifunctional energetic crystals†

Achieving simultaneous optimization of energy density and safety performance remains a fundamental challenge in energetic materials science. Conventional design paradigms fail to address the cooperative regulation of weak intermolecular interactions governing crystal packing. Herein, we propose a halogen engineering strategy—noncovalent synergistic-directed crystallization (NSDC)—to decouple electronic effects from steric constraints for programmable control over solid-state architectures. Two heterocyclic systems, 1-(difluoromethyl)-5-methyl-4-nitro-1H-benzo[d][1,2,3]triazole (DFMNBT) and 3-iodo-4-nitropyrazole (INP), were designed to probe orthogonal noncovalent interaction networks. Single-crystal X-ray diffraction integrated with Hirshfeld surface analysis reveals that fluorine atoms direct antiparallel π–π stacking through dipole polarization (interlayer distance: 3.45–3.62 Å), while iodine atoms template lamellar growth via directional halogen bonding (I⋯O: 3.01 Å, θ = 178°). Density functional theory calculations indicate that, in the absence of strong hydrogen bonds between amino and nitro groups, fluorine substitution achieves high lattice energy through the synergistic effect of multiple weak interactions (111.08 vs. 125.71 kJ mol−1 for TATB), whereas iodine incorporation constructs 3D frameworks through synergistic I⋯O halogen bonds (11.46 kJ mol−1) and halogen-π interactions, boosting lattice energy by 15.55% versus non-halogenated analogues. This work establishes a dual-pronged strategy for predictive engineering of multifunctional energetic crystals, resolving the long-standing energy-safety trade-off.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CrystEngComm
CrystEngComm 化学-化学综合
CiteScore
5.50
自引率
9.70%
发文量
747
审稿时长
1.7 months
期刊介绍: Design and understanding of solid-state and crystalline materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信