DynaClusterNet:基于动态集群网络的边缘计算路由优化

IF 1.5 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS
Radio Science Pub Date : 2025-07-01 DOI:10.1029/2024RS008145
Ravula Rajesh;Ripon Patgiri;Laiphrakpam Dolendro Singh
{"title":"DynaClusterNet:基于动态集群网络的边缘计算路由优化","authors":"Ravula Rajesh;Ripon Patgiri;Laiphrakpam Dolendro Singh","doi":"10.1029/2024RS008145","DOIUrl":null,"url":null,"abstract":"The Internet of Things has led to a surge in data generation and network complexity, especially in edge environments with dynamic topologies and moving objects. Traditional clustering methods in edge computing often fail to address these challenges, such as efficient data aggregation and computational management. DynaClusterNet, a novel framework, introduces three protocols: Adaptive Cluster-Based Deployment Protocol (ACDP), Dynamic Algae Spider Protocol (DASP), and Deep Q Routing Protocol (DQRP). The ACDP uses Voronoi diagrams for optimal node deployment and cluster formation, while the DASP uses Artificial Algae and Black Widow Algorithms to dynamically select cluster heads and optimize data transmission. The DQRP uses deep reinforcement learning to determine efficient routing paths, adapting to environmental changes, node mobility, and evolving network topologies. DynaClusterNet significantly outperforms existing protocols in terms of end-to-end delay, energy consumption, and Packet Delivery Ratio. It ensures a robust, efficient, and adaptable network performance with a minimal end-to-end delay of approximately 0.05 s and significantly lower energy consumption profile than competing protocols.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"60 7","pages":"1-20"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DynaClusterNet: A dynamic clustering network-based routing optimization for edge computing\",\"authors\":\"Ravula Rajesh;Ripon Patgiri;Laiphrakpam Dolendro Singh\",\"doi\":\"10.1029/2024RS008145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Internet of Things has led to a surge in data generation and network complexity, especially in edge environments with dynamic topologies and moving objects. Traditional clustering methods in edge computing often fail to address these challenges, such as efficient data aggregation and computational management. DynaClusterNet, a novel framework, introduces three protocols: Adaptive Cluster-Based Deployment Protocol (ACDP), Dynamic Algae Spider Protocol (DASP), and Deep Q Routing Protocol (DQRP). The ACDP uses Voronoi diagrams for optimal node deployment and cluster formation, while the DASP uses Artificial Algae and Black Widow Algorithms to dynamically select cluster heads and optimize data transmission. The DQRP uses deep reinforcement learning to determine efficient routing paths, adapting to environmental changes, node mobility, and evolving network topologies. DynaClusterNet significantly outperforms existing protocols in terms of end-to-end delay, energy consumption, and Packet Delivery Ratio. It ensures a robust, efficient, and adaptable network performance with a minimal end-to-end delay of approximately 0.05 s and significantly lower energy consumption profile than competing protocols.\",\"PeriodicalId\":49638,\"journal\":{\"name\":\"Radio Science\",\"volume\":\"60 7\",\"pages\":\"1-20\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radio Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11112749/\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radio Science","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11112749/","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

物联网导致数据生成和网络复杂性激增,特别是在具有动态拓扑和移动对象的边缘环境中。传统的边缘计算聚类方法往往不能解决这些挑战,如有效的数据聚合和计算管理。DynaClusterNet是一个新的框架,它引入了三个协议:基于集群的自适应部署协议(ACDP)、动态藻类蜘蛛协议(DASP)和深度Q路由协议(DQRP)。ACDP使用Voronoi图来优化节点部署和簇的形成,而DASP使用人工藻类和黑寡妇算法来动态选择簇头并优化数据传输。DQRP使用深度强化学习来确定有效的路由路径,适应环境变化、节点移动性和不断发展的网络拓扑。DynaClusterNet在端到端延迟、能耗和包交付率方面明显优于现有协议。与竞争协议相比,它确保了健壮、高效和适应性强的网络性能,端到端延迟最小,约为0.05 s,能耗显著降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DynaClusterNet: A dynamic clustering network-based routing optimization for edge computing
The Internet of Things has led to a surge in data generation and network complexity, especially in edge environments with dynamic topologies and moving objects. Traditional clustering methods in edge computing often fail to address these challenges, such as efficient data aggregation and computational management. DynaClusterNet, a novel framework, introduces three protocols: Adaptive Cluster-Based Deployment Protocol (ACDP), Dynamic Algae Spider Protocol (DASP), and Deep Q Routing Protocol (DQRP). The ACDP uses Voronoi diagrams for optimal node deployment and cluster formation, while the DASP uses Artificial Algae and Black Widow Algorithms to dynamically select cluster heads and optimize data transmission. The DQRP uses deep reinforcement learning to determine efficient routing paths, adapting to environmental changes, node mobility, and evolving network topologies. DynaClusterNet significantly outperforms existing protocols in terms of end-to-end delay, energy consumption, and Packet Delivery Ratio. It ensures a robust, efficient, and adaptable network performance with a minimal end-to-end delay of approximately 0.05 s and significantly lower energy consumption profile than competing protocols.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radio Science
Radio Science 工程技术-地球化学与地球物理
CiteScore
3.30
自引率
12.50%
发文量
112
审稿时长
1 months
期刊介绍: Radio Science (RDS) publishes original scientific contributions on radio-frequency electromagnetic-propagation and its applications. Contributions covering measurement, modelling, prediction and forecasting techniques pertinent to fields and waves - including antennas, signals and systems, the terrestrial and space environment and radio propagation problems in radio astronomy - are welcome. Contributions may address propagation through, interaction with, and remote sensing of structures, geophysical media, plasmas, and materials, as well as the application of radio frequency electromagnetic techniques to remote sensing of the Earth and other bodies in the solar system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信