不完全多视图聚类的自加权多维特征融合

IF 3.6 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Ao Li , Xinya Xu , Lijuan Zhou , Yanbing Wang , Tianyu Gao
{"title":"不完全多视图聚类的自加权多维特征融合","authors":"Ao Li ,&nbsp;Xinya Xu ,&nbsp;Lijuan Zhou ,&nbsp;Yanbing Wang ,&nbsp;Tianyu Gao","doi":"10.1016/j.sigpro.2025.110216","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-view subspace clustering is an effective method for clustering high-dimensional data but faces several limitations: (1) It often clusters high-dimensional data directly, overlooking the redundancy of original features and the relevance of features across different dimensions. (2) Higher-order correlations and differential structures between views are frequently ignored, leading to suboptimal performance of the fused subspace representation matrix. To address these issues, we propose an auto-weighted multi-dimensional feature fusion incomplete multi-view clustering method (AWMDF<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>). AWMDF<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> enhances data representation by decomposing the completed data kernel matrix into feature matrices of various dimensions, which are then automatically weighted according to their contribution. These weighted matrices are fused into a consensus feature matrix, which replaces the original high-dimensional data for subspace learning. Additionally, we develop a multi-view subspace fusion method based on the weighted tensor Schatten-p norm, which captures higher-order relationships between views and assigns appropriate weights to each view. AWMDF<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> integrates multi-dimensional feature fusion, subspace learning, and higher-order relational learning into a unified optimization framework. Extensive experiments on six public datasets demonstrate that AWMDF<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> outperforms ten existing advanced baseline methods.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"238 ","pages":"Article 110216"},"PeriodicalIF":3.6000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Auto-weighted multi-dimensional feature fusion for incomplete multi-view clustering\",\"authors\":\"Ao Li ,&nbsp;Xinya Xu ,&nbsp;Lijuan Zhou ,&nbsp;Yanbing Wang ,&nbsp;Tianyu Gao\",\"doi\":\"10.1016/j.sigpro.2025.110216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multi-view subspace clustering is an effective method for clustering high-dimensional data but faces several limitations: (1) It often clusters high-dimensional data directly, overlooking the redundancy of original features and the relevance of features across different dimensions. (2) Higher-order correlations and differential structures between views are frequently ignored, leading to suboptimal performance of the fused subspace representation matrix. To address these issues, we propose an auto-weighted multi-dimensional feature fusion incomplete multi-view clustering method (AWMDF<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>). AWMDF<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> enhances data representation by decomposing the completed data kernel matrix into feature matrices of various dimensions, which are then automatically weighted according to their contribution. These weighted matrices are fused into a consensus feature matrix, which replaces the original high-dimensional data for subspace learning. Additionally, we develop a multi-view subspace fusion method based on the weighted tensor Schatten-p norm, which captures higher-order relationships between views and assigns appropriate weights to each view. AWMDF<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> integrates multi-dimensional feature fusion, subspace learning, and higher-order relational learning into a unified optimization framework. Extensive experiments on six public datasets demonstrate that AWMDF<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> outperforms ten existing advanced baseline methods.</div></div>\",\"PeriodicalId\":49523,\"journal\":{\"name\":\"Signal Processing\",\"volume\":\"238 \",\"pages\":\"Article 110216\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165168425003305\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168425003305","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

多视图子空间聚类是一种有效的高维数据聚类方法,但存在以下局限性:(1)通常直接聚类高维数据,忽略了原始特征的冗余性和不同维间特征的相关性。(2)视图之间的高阶相关性和差分结构经常被忽略,导致融合子空间表示矩阵的性能不理想。为了解决这些问题,我们提出了一种自加权多维特征融合不完全多视图聚类方法(AWMDF2)。AWMDF2通过将完成的数据核矩阵分解为不同维度的特征矩阵来增强数据表示,然后根据它们的贡献自动加权。将这些加权矩阵融合成一致特征矩阵,取代原有的高维数据进行子空间学习。此外,我们开发了一种基于加权张量schattenp范数的多视图子空间融合方法,该方法捕获视图之间的高阶关系,并为每个视图分配适当的权重。AWMDF2将多维特征融合、子空间学习和高阶关系学习集成到一个统一的优化框架中。在6个公共数据集上的大量实验表明,AWMDF2优于现有的10种先进基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Auto-weighted multi-dimensional feature fusion for incomplete multi-view clustering
Multi-view subspace clustering is an effective method for clustering high-dimensional data but faces several limitations: (1) It often clusters high-dimensional data directly, overlooking the redundancy of original features and the relevance of features across different dimensions. (2) Higher-order correlations and differential structures between views are frequently ignored, leading to suboptimal performance of the fused subspace representation matrix. To address these issues, we propose an auto-weighted multi-dimensional feature fusion incomplete multi-view clustering method (AWMDF2). AWMDF2 enhances data representation by decomposing the completed data kernel matrix into feature matrices of various dimensions, which are then automatically weighted according to their contribution. These weighted matrices are fused into a consensus feature matrix, which replaces the original high-dimensional data for subspace learning. Additionally, we develop a multi-view subspace fusion method based on the weighted tensor Schatten-p norm, which captures higher-order relationships between views and assigns appropriate weights to each view. AWMDF2 integrates multi-dimensional feature fusion, subspace learning, and higher-order relational learning into a unified optimization framework. Extensive experiments on six public datasets demonstrate that AWMDF2 outperforms ten existing advanced baseline methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信