多步链路预测的高阶依赖关系

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Xiang Li
{"title":"多步链路预测的高阶依赖关系","authors":"Xiang Li","doi":"10.1016/j.chaos.2025.116930","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-step link prediction methods offer significant potential across diverse domains, including trajectory prediction, recommender systems, and evolutionary game theory. By capturing higher-order dependencies among nodes, these methods enhance the accuracy of multi-step link prediction. In this paper, we introduce a novel algorithm for multi-step link prediction that explicitly considers higher-order dependencies within networks. To achieve precise multi-step link prediction, we propose a higher-order dependency network model based on flow data, selectively converting higher-order dependencies among nodes into higher-order nodes along with corresponding edges, and next devise an efficient algorithm. The effectiveness of our approach is demonstrated through empirical flow datasets, and we further apply it in the context of journal recommender systems.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"200 ","pages":"Article 116930"},"PeriodicalIF":5.6000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher-order dependencies for multi-step link prediction\",\"authors\":\"Xiang Li\",\"doi\":\"10.1016/j.chaos.2025.116930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multi-step link prediction methods offer significant potential across diverse domains, including trajectory prediction, recommender systems, and evolutionary game theory. By capturing higher-order dependencies among nodes, these methods enhance the accuracy of multi-step link prediction. In this paper, we introduce a novel algorithm for multi-step link prediction that explicitly considers higher-order dependencies within networks. To achieve precise multi-step link prediction, we propose a higher-order dependency network model based on flow data, selectively converting higher-order dependencies among nodes into higher-order nodes along with corresponding edges, and next devise an efficient algorithm. The effectiveness of our approach is demonstrated through empirical flow datasets, and we further apply it in the context of journal recommender systems.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"200 \",\"pages\":\"Article 116930\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925009439\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925009439","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

多步链接预测方法在不同的领域提供了巨大的潜力,包括轨迹预测、推荐系统和进化博弈论。这些方法通过捕获节点间的高阶依赖关系,提高了多步链路预测的准确性。在本文中,我们引入了一种新的多步链路预测算法,该算法明确地考虑了网络中的高阶依赖关系。为了实现精确的多步链路预测,本文提出了一种基于流量数据的高阶依赖网络模型,将节点间的高阶依赖关系选择性地转换为具有相应边的高阶节点,并设计了一种高效的算法。我们的方法的有效性通过经验流数据集得到了证明,我们进一步将其应用于期刊推荐系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher-order dependencies for multi-step link prediction
Multi-step link prediction methods offer significant potential across diverse domains, including trajectory prediction, recommender systems, and evolutionary game theory. By capturing higher-order dependencies among nodes, these methods enhance the accuracy of multi-step link prediction. In this paper, we introduce a novel algorithm for multi-step link prediction that explicitly considers higher-order dependencies within networks. To achieve precise multi-step link prediction, we propose a higher-order dependency network model based on flow data, selectively converting higher-order dependencies among nodes into higher-order nodes along with corresponding edges, and next devise an efficient algorithm. The effectiveness of our approach is demonstrated through empirical flow datasets, and we further apply it in the context of journal recommender systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信