交叉扩散和磁效应作用下混合纳米流体多孔n形换热器的传热传质特性

IF 2.5 3区 工程技术 Q2 MECHANICS
Souhail Souai , Mahadul Islam , Samrat Hansda , Soraya Trabelsi , Sabrine Garrouri , Mamun Molla , Ezeddine Sediki
{"title":"交叉扩散和磁效应作用下混合纳米流体多孔n形换热器的传热传质特性","authors":"Souhail Souai ,&nbsp;Mahadul Islam ,&nbsp;Samrat Hansda ,&nbsp;Soraya Trabelsi ,&nbsp;Sabrine Garrouri ,&nbsp;Mamun Molla ,&nbsp;Ezeddine Sediki","doi":"10.1016/j.euromechflu.2025.204337","DOIUrl":null,"url":null,"abstract":"<div><div>Optimizing the geometry of cooling systems is vital for achieving the best thermal performance, ensuring energy efficiency, and supporting sustainability. This study introduces a novel approach by exploring the potential of a non-toxic hybrid nanofluid, an 80:20 water-propylene glycol blend combined with multi-walled carbon nanotubes (MWCNT) and iron oxide (Fe₃O₄) nanoparticles, within an innovative n-shaped heat exchanger. The research focuses on the impact of heat and mass sources on magnetohydrodynamic double-diffusive mixed convection (MHD-DDMC), emphasizing the intricate interactions between porous media, nanoparticle dynamics, cross-diffusion effects, and magnetic fields. Numerical simulations are conducted using the lattice Boltzmann method (LBM) to analyze the system's behavior. A sensitivity analysis, supported by Response Surface Methodology (RSM) and Analysis of Variance (ANOVA), quantifies the effects of various parameters on heat and mass transfer, establishing correlations for the average Nusselt number (<span><math><mrow><mover><mrow><mi>Nu</mi></mrow><mo>̅</mo></mover></mrow></math></span>) and Sherwood number (<span><math><mrow><mover><mrow><mi>Sh</mi></mrow><mo>̅</mo></mover></mrow></math></span>). Various dimensionless variables, including porosity (ε), nanoparticles volume fraction (ϕ), source size (a), Lewis number (Le), Richardson number (Ri), buoyancy ratio (Br), Darcy number (Da), Hartmann number (Ha), Soret number (S<sub>r</sub>), and Du<sub><em>f</em></sub>our number ( D<sub><em>f</em></sub>), were evaluated to understand their effect on fluid structure, heat, and mass transfer. The results show that as Le increases, <span><math><mrow><mover><mrow><mi>Nu</mi></mrow><mo>̅</mo></mover></mrow></math></span> decreases by 23 % at a= 0.1, while the average <span><math><mrow><mover><mrow><mi>Sh</mi></mrow><mo>̅</mo></mover></mrow></math></span> increases by 81 % at a= 0.3. Rising Ha from 0 to 90 causes <span><math><mrow><mover><mrow><mi>Nu</mi></mrow><mo>̅</mo></mover></mrow></math></span> to decrease by 58 %, and <span><math><mrow><mover><mrow><mi>Sh</mi></mrow><mo>̅</mo></mover></mrow></math></span> to decrease by 58 % at a= 0.3. Furthermore, reducing Da from 10⁻¹ to 10⁻⁵ results in the highest increase in <span><math><mrow><mover><mrow><mi>Nu</mi></mrow><mo>̅</mo></mover></mrow></math></span> by 56 %, and the largest rise in <span><math><mrow><mover><mrow><mi>Sh</mi></mrow><mo>̅</mo></mover></mrow></math></span> by 67 % at a= 0.3. Sensitivity analysis revealed that the ϕ, D<sub><em>f</em></sub>, and parameters Br, S<sub><em>r</em></sub>, and Ri are among the most influential parameters, with their effects on heat and mass transfer being statistically significant according to ANOVA results. At high concentrations, ϕ enhances heat transfer, while D<sub><em>f</em></sub> significantly improves mass transfer. Additionally, <span><math><mi>a</mi></math></span>, Br, S<sub><em>r</em></sub>, and ϕ positively contribute to both heat and mass transfer, while Ri shows a negative influence.</div></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"114 ","pages":"Article 204337"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of heat and mass transfer in a porous n-shaped heat exchanger using hybrid nanofluid under cross-diffusion and magnetic effects\",\"authors\":\"Souhail Souai ,&nbsp;Mahadul Islam ,&nbsp;Samrat Hansda ,&nbsp;Soraya Trabelsi ,&nbsp;Sabrine Garrouri ,&nbsp;Mamun Molla ,&nbsp;Ezeddine Sediki\",\"doi\":\"10.1016/j.euromechflu.2025.204337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Optimizing the geometry of cooling systems is vital for achieving the best thermal performance, ensuring energy efficiency, and supporting sustainability. This study introduces a novel approach by exploring the potential of a non-toxic hybrid nanofluid, an 80:20 water-propylene glycol blend combined with multi-walled carbon nanotubes (MWCNT) and iron oxide (Fe₃O₄) nanoparticles, within an innovative n-shaped heat exchanger. The research focuses on the impact of heat and mass sources on magnetohydrodynamic double-diffusive mixed convection (MHD-DDMC), emphasizing the intricate interactions between porous media, nanoparticle dynamics, cross-diffusion effects, and magnetic fields. Numerical simulations are conducted using the lattice Boltzmann method (LBM) to analyze the system's behavior. A sensitivity analysis, supported by Response Surface Methodology (RSM) and Analysis of Variance (ANOVA), quantifies the effects of various parameters on heat and mass transfer, establishing correlations for the average Nusselt number (<span><math><mrow><mover><mrow><mi>Nu</mi></mrow><mo>̅</mo></mover></mrow></math></span>) and Sherwood number (<span><math><mrow><mover><mrow><mi>Sh</mi></mrow><mo>̅</mo></mover></mrow></math></span>). Various dimensionless variables, including porosity (ε), nanoparticles volume fraction (ϕ), source size (a), Lewis number (Le), Richardson number (Ri), buoyancy ratio (Br), Darcy number (Da), Hartmann number (Ha), Soret number (S<sub>r</sub>), and Du<sub><em>f</em></sub>our number ( D<sub><em>f</em></sub>), were evaluated to understand their effect on fluid structure, heat, and mass transfer. The results show that as Le increases, <span><math><mrow><mover><mrow><mi>Nu</mi></mrow><mo>̅</mo></mover></mrow></math></span> decreases by 23 % at a= 0.1, while the average <span><math><mrow><mover><mrow><mi>Sh</mi></mrow><mo>̅</mo></mover></mrow></math></span> increases by 81 % at a= 0.3. Rising Ha from 0 to 90 causes <span><math><mrow><mover><mrow><mi>Nu</mi></mrow><mo>̅</mo></mover></mrow></math></span> to decrease by 58 %, and <span><math><mrow><mover><mrow><mi>Sh</mi></mrow><mo>̅</mo></mover></mrow></math></span> to decrease by 58 % at a= 0.3. Furthermore, reducing Da from 10⁻¹ to 10⁻⁵ results in the highest increase in <span><math><mrow><mover><mrow><mi>Nu</mi></mrow><mo>̅</mo></mover></mrow></math></span> by 56 %, and the largest rise in <span><math><mrow><mover><mrow><mi>Sh</mi></mrow><mo>̅</mo></mover></mrow></math></span> by 67 % at a= 0.3. Sensitivity analysis revealed that the ϕ, D<sub><em>f</em></sub>, and parameters Br, S<sub><em>r</em></sub>, and Ri are among the most influential parameters, with their effects on heat and mass transfer being statistically significant according to ANOVA results. At high concentrations, ϕ enhances heat transfer, while D<sub><em>f</em></sub> significantly improves mass transfer. Additionally, <span><math><mi>a</mi></math></span>, Br, S<sub><em>r</em></sub>, and ϕ positively contribute to both heat and mass transfer, while Ri shows a negative influence.</div></div>\",\"PeriodicalId\":11985,\"journal\":{\"name\":\"European Journal of Mechanics B-fluids\",\"volume\":\"114 \",\"pages\":\"Article 204337\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mechanics B-fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0997754625001189\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754625001189","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

优化冷却系统的几何形状对于实现最佳热性能、确保能源效率和支持可持续性至关重要。这项研究引入了一种新的方法,通过探索一种无毒的混合纳米流体的潜力,一种80:20的水-丙二醇混合物,结合多壁碳纳米管(MWCNT)和氧化铁(Fe₃O₄)纳米颗粒,在一个创新的n形换热器中。研究了热源和质量源对磁流体动力学双扩散混合对流(MHD-DDMC)的影响,强调了多孔介质、纳米颗粒动力学、交叉扩散效应和磁场之间复杂的相互作用。采用晶格玻尔兹曼方法(LBM)进行了数值模拟,分析了系统的行为。采用响应面法(RSM)和方差分析(ANOVA)进行敏感性分析,量化了各参数对传热传质的影响,建立了平均努塞尔数(Nu′s)和舍伍德数(Sh′s)的相关性。通过评估孔隙度(ε)、纳米颗粒体积分数(ϕ)、源尺寸(a)、Lewis数(Le)、Richardson数(Ri)、浮力比(Br)、Darcy数(Da)、Hartmann数(Ha)、Soret数(Sr)和Dufour数(Df)等各种无因次变量,了解它们对流体结构、传热和传质的影响。结果表明,随着Le的增大,Nu′s在a= 0.1时减小23%,而Sh′s在a= 0.3时增大81%。在a= 0.3时,Ha从0增加到90,Nu′s减少58%,Sh′s减少58%。此外,将Da从10 -⁻¹减少到10 -⁻-导致Nu - 35的最高增长率为56%,Sh - 35的最大增长率为67%,a= 0.3。敏感度分析显示,φ、Df和参数Br、Sr和Ri是影响最大的参数,根据方差分析结果,它们对传热传质的影响具有统计学意义。在高浓度下,ϕ增强传热,而Df显著改善传质。此外,a、Br、Sr和φ对传热和传质都有积极影响,而Ri则有消极影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of heat and mass transfer in a porous n-shaped heat exchanger using hybrid nanofluid under cross-diffusion and magnetic effects
Optimizing the geometry of cooling systems is vital for achieving the best thermal performance, ensuring energy efficiency, and supporting sustainability. This study introduces a novel approach by exploring the potential of a non-toxic hybrid nanofluid, an 80:20 water-propylene glycol blend combined with multi-walled carbon nanotubes (MWCNT) and iron oxide (Fe₃O₄) nanoparticles, within an innovative n-shaped heat exchanger. The research focuses on the impact of heat and mass sources on magnetohydrodynamic double-diffusive mixed convection (MHD-DDMC), emphasizing the intricate interactions between porous media, nanoparticle dynamics, cross-diffusion effects, and magnetic fields. Numerical simulations are conducted using the lattice Boltzmann method (LBM) to analyze the system's behavior. A sensitivity analysis, supported by Response Surface Methodology (RSM) and Analysis of Variance (ANOVA), quantifies the effects of various parameters on heat and mass transfer, establishing correlations for the average Nusselt number (Nu̅) and Sherwood number (Sh̅). Various dimensionless variables, including porosity (ε), nanoparticles volume fraction (ϕ), source size (a), Lewis number (Le), Richardson number (Ri), buoyancy ratio (Br), Darcy number (Da), Hartmann number (Ha), Soret number (Sr), and Dufour number ( Df), were evaluated to understand their effect on fluid structure, heat, and mass transfer. The results show that as Le increases, Nu̅ decreases by 23 % at a= 0.1, while the average Sh̅ increases by 81 % at a= 0.3. Rising Ha from 0 to 90 causes Nu̅ to decrease by 58 %, and Sh̅ to decrease by 58 % at a= 0.3. Furthermore, reducing Da from 10⁻¹ to 10⁻⁵ results in the highest increase in Nu̅ by 56 %, and the largest rise in Sh̅ by 67 % at a= 0.3. Sensitivity analysis revealed that the ϕ, Df, and parameters Br, Sr, and Ri are among the most influential parameters, with their effects on heat and mass transfer being statistically significant according to ANOVA results. At high concentrations, ϕ enhances heat transfer, while Df significantly improves mass transfer. Additionally, a, Br, Sr, and ϕ positively contribute to both heat and mass transfer, while Ri shows a negative influence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
3.80%
发文量
127
审稿时长
58 days
期刊介绍: The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信