非随机分布数据的隐私保护估计

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Xirui Liu , Ke Yang , Liwen Xu , Mixia Wu
{"title":"非随机分布数据的隐私保护估计","authors":"Xirui Liu ,&nbsp;Ke Yang ,&nbsp;Liwen Xu ,&nbsp;Mixia Wu","doi":"10.1016/j.jspi.2025.106326","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates data distributed across various machines in a non-random manner. We introduce two innovative distributed estimators, tailored to accommodate varying levels of communication cost and data privacy protection. The proposed estimators adeptly addresses the challenges associated with the non-random distribution of data. Both methods are communication-efficient, necessitating only two rounds of communication between the Master and worker machines, and safeguard data privacy by solely sharing summary statistics. Under mild conditions, we establish the <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-error bound and the asymptotic distribution of the estimators. Theoretical analysis confirms that the proposed estimators are statistically efficient. Additionally, numerical simulations and two real-world applications demonstrate the good performance of the proposed methods.</div></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"241 ","pages":"Article 106326"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Privacy-preserving estimation for non-randomly distributed data\",\"authors\":\"Xirui Liu ,&nbsp;Ke Yang ,&nbsp;Liwen Xu ,&nbsp;Mixia Wu\",\"doi\":\"10.1016/j.jspi.2025.106326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates data distributed across various machines in a non-random manner. We introduce two innovative distributed estimators, tailored to accommodate varying levels of communication cost and data privacy protection. The proposed estimators adeptly addresses the challenges associated with the non-random distribution of data. Both methods are communication-efficient, necessitating only two rounds of communication between the Master and worker machines, and safeguard data privacy by solely sharing summary statistics. Under mild conditions, we establish the <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-error bound and the asymptotic distribution of the estimators. Theoretical analysis confirms that the proposed estimators are statistically efficient. Additionally, numerical simulations and two real-world applications demonstrate the good performance of the proposed methods.</div></div>\",\"PeriodicalId\":50039,\"journal\":{\"name\":\"Journal of Statistical Planning and Inference\",\"volume\":\"241 \",\"pages\":\"Article 106326\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Planning and Inference\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375825000643\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Planning and Inference","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375825000643","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了以非随机方式分布在不同机器上的数据。我们介绍了两个创新的分布式估算器,为适应不同级别的通信成本和数据隐私保护而量身定制。所提出的估计器巧妙地解决了与数据的非随机分布相关的挑战。这两种方法都具有通信效率,只需要在主机器和工作机器之间进行两轮通信,并且通过单独共享汇总统计数据来保护数据隐私。在温和条件下,我们建立了估计量的l2误差界和渐近分布。理论分析证实了所提估计器在统计上是有效的。此外,数值模拟和两个实际应用验证了所提方法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Privacy-preserving estimation for non-randomly distributed data
This paper investigates data distributed across various machines in a non-random manner. We introduce two innovative distributed estimators, tailored to accommodate varying levels of communication cost and data privacy protection. The proposed estimators adeptly addresses the challenges associated with the non-random distribution of data. Both methods are communication-efficient, necessitating only two rounds of communication between the Master and worker machines, and safeguard data privacy by solely sharing summary statistics. Under mild conditions, we establish the 2-error bound and the asymptotic distribution of the estimators. Theoretical analysis confirms that the proposed estimators are statistically efficient. Additionally, numerical simulations and two real-world applications demonstrate the good performance of the proposed methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Planning and Inference
Journal of Statistical Planning and Inference 数学-统计学与概率论
CiteScore
2.10
自引率
11.10%
发文量
78
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Planning and Inference offers itself as a multifaceted and all-inclusive bridge between classical aspects of statistics and probability, and the emerging interdisciplinary aspects that have a potential of revolutionizing the subject. While we maintain our traditional strength in statistical inference, design, classical probability, and large sample methods, we also have a far more inclusive and broadened scope to keep up with the new problems that confront us as statisticians, mathematicians, and scientists. We publish high quality articles in all branches of statistics, probability, discrete mathematics, machine learning, and bioinformatics. We also especially welcome well written and up to date review articles on fundamental themes of statistics, probability, machine learning, and general biostatistics. Thoughtful letters to the editors, interesting problems in need of a solution, and short notes carrying an element of elegance or beauty are equally welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信