{"title":"二硒化钼局部熔化曲线的反常行为","authors":"Fernan Saiz","doi":"10.1016/j.cocom.2025.e01097","DOIUrl":null,"url":null,"abstract":"<div><div>This work investigates the local solid–liquid and liquid–liquid phase transitions of bulk molybdenum diselenide using ab initio molecular dynamics. The melting is studied with the Z method. Taking into account system size effects, our simulations predict a normal melting point of 1962.2 K at 1 bar. The prediction of the temperature of the resulting melt as a function of the applied hydrostatic pressure suggests the formation of a new liquid phase at around 5 to 6 GPa.</div></div>","PeriodicalId":46322,"journal":{"name":"Computational Condensed Matter","volume":"44 ","pages":"Article e01097"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The anomalous behavior of the local melting curve of molybdenum diselenide\",\"authors\":\"Fernan Saiz\",\"doi\":\"10.1016/j.cocom.2025.e01097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work investigates the local solid–liquid and liquid–liquid phase transitions of bulk molybdenum diselenide using ab initio molecular dynamics. The melting is studied with the Z method. Taking into account system size effects, our simulations predict a normal melting point of 1962.2 K at 1 bar. The prediction of the temperature of the resulting melt as a function of the applied hydrostatic pressure suggests the formation of a new liquid phase at around 5 to 6 GPa.</div></div>\",\"PeriodicalId\":46322,\"journal\":{\"name\":\"Computational Condensed Matter\",\"volume\":\"44 \",\"pages\":\"Article e01097\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Condensed Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352214325000978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352214325000978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
The anomalous behavior of the local melting curve of molybdenum diselenide
This work investigates the local solid–liquid and liquid–liquid phase transitions of bulk molybdenum diselenide using ab initio molecular dynamics. The melting is studied with the Z method. Taking into account system size effects, our simulations predict a normal melting point of 1962.2 K at 1 bar. The prediction of the temperature of the resulting melt as a function of the applied hydrostatic pressure suggests the formation of a new liquid phase at around 5 to 6 GPa.