可数有序群与Weihrauch可约性

IF 0.6 2区 数学 Q2 LOGIC
Ang Li
{"title":"可数有序群与Weihrauch可约性","authors":"Ang Li","doi":"10.1016/j.apal.2025.103644","DOIUrl":null,"url":null,"abstract":"<div><div>This paper continues to study the connection between reverse mathematics and Weihrauch reducibility. In particular, we study the problems formed from Maltsev's theorem <span><span>[11]</span></span> on the order types of countable ordered groups. Solomon <span><span>[14]</span></span> showed that the theorem is equivalent to <span><math><msubsup><mrow><mi>Π</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>-<span><math><mi>C</mi><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, the strongest of the big five subsystems of second order arithmetic. We show that the strength of the theorem comes from having a dense linear order without endpoints in its order type. Then, we show that for the related Weihrauch problem to be strong enough to be equivalent to <span><math><mover><mrow><mi>WF</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> (the analog problem of <span><math><msubsup><mrow><mi>Π</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>-<span><math><mi>C</mi><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>), an order-preserving function is necessary in the output. Without the order-preserving function, the problems are very much to the side compared to analog problems of the big five.</div></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"177 1","pages":"Article 103644"},"PeriodicalIF":0.6000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Countable ordered groups and Weihrauch reducibility\",\"authors\":\"Ang Li\",\"doi\":\"10.1016/j.apal.2025.103644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper continues to study the connection between reverse mathematics and Weihrauch reducibility. In particular, we study the problems formed from Maltsev's theorem <span><span>[11]</span></span> on the order types of countable ordered groups. Solomon <span><span>[14]</span></span> showed that the theorem is equivalent to <span><math><msubsup><mrow><mi>Π</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>-<span><math><mi>C</mi><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, the strongest of the big five subsystems of second order arithmetic. We show that the strength of the theorem comes from having a dense linear order without endpoints in its order type. Then, we show that for the related Weihrauch problem to be strong enough to be equivalent to <span><math><mover><mrow><mi>WF</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> (the analog problem of <span><math><msubsup><mrow><mi>Π</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>-<span><math><mi>C</mi><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>), an order-preserving function is necessary in the output. Without the order-preserving function, the problems are very much to the side compared to analog problems of the big five.</div></div>\",\"PeriodicalId\":50762,\"journal\":{\"name\":\"Annals of Pure and Applied Logic\",\"volume\":\"177 1\",\"pages\":\"Article 103644\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168007225000934\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007225000934","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

本文继续研究逆向数学与魏氏约化性之间的联系。特别地,我们研究了由马尔采夫定理[11]形成的关于可数有序群的序型问题。Solomon[14]证明了该定理等价于二阶算法五大子系统中最强的Π11-CA0。我们证明了定理的强度来自于在其阶型中有一个没有端点的密集线性阶。然后,我们证明了为了使相关的Weihrauch问题足够强而等价于WF - (Π11-CA0的模拟问题),输出中必须有一个保序函数。如果没有保序函数,这些问题与五大模拟问题相比就显得微不足道了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Countable ordered groups and Weihrauch reducibility
This paper continues to study the connection between reverse mathematics and Weihrauch reducibility. In particular, we study the problems formed from Maltsev's theorem [11] on the order types of countable ordered groups. Solomon [14] showed that the theorem is equivalent to Π11-CA0, the strongest of the big five subsystems of second order arithmetic. We show that the strength of the theorem comes from having a dense linear order without endpoints in its order type. Then, we show that for the related Weihrauch problem to be strong enough to be equivalent to WFˆ (the analog problem of Π11-CA0), an order-preserving function is necessary in the output. Without the order-preserving function, the problems are very much to the side compared to analog problems of the big five.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
78
审稿时长
200 days
期刊介绍: The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信