基于光镊的单分子力光谱中褶皱的自动识别

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Linyao Chen, Hao Wu, Hao Huang, Jingru Sun, Yanghui Li
{"title":"基于光镊的单分子力光谱中褶皱的自动识别","authors":"Linyao Chen, Hao Wu, Hao Huang, Jingru Sun, Yanghui Li","doi":"10.1002/adts.202500522","DOIUrl":null,"url":null,"abstract":"Single‐Molecule Force Spectroscopy (SMFS) provides crucial insights into molecular mechanical properties and interactions. However, the localization of folding events relies on manual operations, which are inefficient and susceptible to subjective errors. Existing automated methods also face limitations in accuracy and robustness. To overcome these challenges, this study introduces an Inception‐based Self‐attention Skip Network (ISSN), combining Inception blocks with a Self‐attention mechanism to classify and localize folding events, including initiation and termination sites. And proposed a Force‐Distance Curve (FDC) simulation method to address the issue of insufficient datasets. Validation on Deoxyribonucleic Acid (DNA) hairpin Force‐Distance Curves (FDCs) demonstrates that ISSN achieves outstanding performance, including 99.8% classification accuracy, a low mean absolute error (MAE) of 0.176 pN for the force site, and 1.57 nm MAE for the distance site, even under high noise conditions. Compared to other classic models, ISSN not only delivers superior accuracy but also exhibits strong generalization and robustness for automated optical tweezers SMFS analysis.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"20 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Identification of Fold in Optical Tweezers‐Based Single‐Molecule Force Spectroscopy\",\"authors\":\"Linyao Chen, Hao Wu, Hao Huang, Jingru Sun, Yanghui Li\",\"doi\":\"10.1002/adts.202500522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single‐Molecule Force Spectroscopy (SMFS) provides crucial insights into molecular mechanical properties and interactions. However, the localization of folding events relies on manual operations, which are inefficient and susceptible to subjective errors. Existing automated methods also face limitations in accuracy and robustness. To overcome these challenges, this study introduces an Inception‐based Self‐attention Skip Network (ISSN), combining Inception blocks with a Self‐attention mechanism to classify and localize folding events, including initiation and termination sites. And proposed a Force‐Distance Curve (FDC) simulation method to address the issue of insufficient datasets. Validation on Deoxyribonucleic Acid (DNA) hairpin Force‐Distance Curves (FDCs) demonstrates that ISSN achieves outstanding performance, including 99.8% classification accuracy, a low mean absolute error (MAE) of 0.176 pN for the force site, and 1.57 nm MAE for the distance site, even under high noise conditions. Compared to other classic models, ISSN not only delivers superior accuracy but also exhibits strong generalization and robustness for automated optical tweezers SMFS analysis.\",\"PeriodicalId\":7219,\"journal\":{\"name\":\"Advanced Theory and Simulations\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adts.202500522\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202500522","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

单分子力谱(SMFS)为分子力学特性和相互作用提供了重要的见解。然而,折叠事件的定位依赖于人工操作,效率低下且容易受到主观误差的影响。现有的自动化方法在准确性和鲁棒性方面也存在局限性。为了克服这些挑战,本研究引入了一个基于Inception的自注意跳跃网络(ISSN),将Inception块与自注意机制结合起来,对折叠事件进行分类和定位,包括起始和终止位点。并提出了一种力-距离曲线(FDC)仿真方法来解决数据集不足的问题。在脱氧核糖核酸(DNA)发夹力-距离曲线(FDCs)上的验证表明,ISSN具有出色的性能,包括99.8%的分类准确率,即使在高噪声条件下,力位点的平均绝对误差(MAE)为0.176 pN,距离位点的平均绝对误差(MAE)为1.57 nm。与其他经典模型相比,ISSN不仅提供了更高的精度,而且在自动光镊SMFS分析中表现出很强的泛化和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Identification of Fold in Optical Tweezers‐Based Single‐Molecule Force Spectroscopy
Single‐Molecule Force Spectroscopy (SMFS) provides crucial insights into molecular mechanical properties and interactions. However, the localization of folding events relies on manual operations, which are inefficient and susceptible to subjective errors. Existing automated methods also face limitations in accuracy and robustness. To overcome these challenges, this study introduces an Inception‐based Self‐attention Skip Network (ISSN), combining Inception blocks with a Self‐attention mechanism to classify and localize folding events, including initiation and termination sites. And proposed a Force‐Distance Curve (FDC) simulation method to address the issue of insufficient datasets. Validation on Deoxyribonucleic Acid (DNA) hairpin Force‐Distance Curves (FDCs) demonstrates that ISSN achieves outstanding performance, including 99.8% classification accuracy, a low mean absolute error (MAE) of 0.176 pN for the force site, and 1.57 nm MAE for the distance site, even under high noise conditions. Compared to other classic models, ISSN not only delivers superior accuracy but also exhibits strong generalization and robustness for automated optical tweezers SMFS analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信