Olena Mandrik, Sophie Whyte, Natalia Kunst, Annabel Rayner, Melissa Harden, Sofia Dias, Katherine Payne, Stephen Palmer, Marta O Soares
{"title":"模拟多种癌症早期检测测试的影响:疾病模型的自然史综述。","authors":"Olena Mandrik, Sophie Whyte, Natalia Kunst, Annabel Rayner, Melissa Harden, Sofia Dias, Katherine Payne, Stephen Palmer, Marta O Soares","doi":"10.1177/0272989X251351639","DOIUrl":null,"url":null,"abstract":"<p><p>IntroductionThe potential for multicancer early detection (MCED) tests to detect cancer at earlier stages is currently being evaluated in screening clinical trials. Once trial evidence becomes available, modeling will be necessary to predict the effects on final outcomes (benefits and harms), account for heterogeneity in determining clinical and cost-effectiveness, and explore alternative screening program specifications. The natural history of disease (NHD) component will use statistical, mathematical, or calibration methods. This work aims to identify, review, and critically appraise the existing literature for alternative modeling approaches proposed for MCED that include an NHD component.MethodsModeling approaches for MCED screening that include an NHD component were identified from the literature, reviewed, and critically appraised. Purposively selected (non-MCED) cancer-screening models were also reviewed. The appraisal focused on the scope, data sources, evaluation approaches, and the structure and parameterization of the models.ResultsFive different MCED models incorporating an NHD component were identified and reviewed, alongside 4 additional (non-MCED) models. The critical appraisal highlighted several features of this literature. In the absence of trial evidence, MCED effects are based on predictions derived from test accuracy. These predictions rely on simplifying assumptions with unknown impacts, such as the stage-shift assumption used to estimate mortality impacts from predicted stage shifts. None of the MCED models fully characterized uncertainty in the NHD or examined uncertainty in the stage-shift assumption.ConclusionThere is currently no modeling approach for MCEDs that can integrate clinical study evidence. In support of policy, it is important that efforts are made to develop models that make the best use of data from the large and costly clinical studies being designed and implemented across the globe.HighlightsIn the absence of trial evidence, published estimates of the effects of multicancer early detection (MCED) tests are based on predictions derived from test accuracy.These predictions rely on simplifying assumptions, such as the stage-shift assumption used to estimate mortality effects from predicted stage shifts. The effects of such simplifying assumptions are mostly unknown.None of the existing MCED models fully characterize uncertainty in the natural history of disease; none examine uncertainty in the stage-shift assumption.Currently, there is no modeling approach that can integrate clinical study evidence.</p>","PeriodicalId":49839,"journal":{"name":"Medical Decision Making","volume":" ","pages":"1013-1024"},"PeriodicalIF":3.1000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12511643/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modeling the Impact of Multicancer Early Detection Tests: A Review of Natural History of Disease Models.\",\"authors\":\"Olena Mandrik, Sophie Whyte, Natalia Kunst, Annabel Rayner, Melissa Harden, Sofia Dias, Katherine Payne, Stephen Palmer, Marta O Soares\",\"doi\":\"10.1177/0272989X251351639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>IntroductionThe potential for multicancer early detection (MCED) tests to detect cancer at earlier stages is currently being evaluated in screening clinical trials. Once trial evidence becomes available, modeling will be necessary to predict the effects on final outcomes (benefits and harms), account for heterogeneity in determining clinical and cost-effectiveness, and explore alternative screening program specifications. The natural history of disease (NHD) component will use statistical, mathematical, or calibration methods. This work aims to identify, review, and critically appraise the existing literature for alternative modeling approaches proposed for MCED that include an NHD component.MethodsModeling approaches for MCED screening that include an NHD component were identified from the literature, reviewed, and critically appraised. Purposively selected (non-MCED) cancer-screening models were also reviewed. The appraisal focused on the scope, data sources, evaluation approaches, and the structure and parameterization of the models.ResultsFive different MCED models incorporating an NHD component were identified and reviewed, alongside 4 additional (non-MCED) models. The critical appraisal highlighted several features of this literature. In the absence of trial evidence, MCED effects are based on predictions derived from test accuracy. These predictions rely on simplifying assumptions with unknown impacts, such as the stage-shift assumption used to estimate mortality impacts from predicted stage shifts. None of the MCED models fully characterized uncertainty in the NHD or examined uncertainty in the stage-shift assumption.ConclusionThere is currently no modeling approach for MCEDs that can integrate clinical study evidence. In support of policy, it is important that efforts are made to develop models that make the best use of data from the large and costly clinical studies being designed and implemented across the globe.HighlightsIn the absence of trial evidence, published estimates of the effects of multicancer early detection (MCED) tests are based on predictions derived from test accuracy.These predictions rely on simplifying assumptions, such as the stage-shift assumption used to estimate mortality effects from predicted stage shifts. The effects of such simplifying assumptions are mostly unknown.None of the existing MCED models fully characterize uncertainty in the natural history of disease; none examine uncertainty in the stage-shift assumption.Currently, there is no modeling approach that can integrate clinical study evidence.</p>\",\"PeriodicalId\":49839,\"journal\":{\"name\":\"Medical Decision Making\",\"volume\":\" \",\"pages\":\"1013-1024\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12511643/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Decision Making\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/0272989X251351639\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/0272989X251351639","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Modeling the Impact of Multicancer Early Detection Tests: A Review of Natural History of Disease Models.
IntroductionThe potential for multicancer early detection (MCED) tests to detect cancer at earlier stages is currently being evaluated in screening clinical trials. Once trial evidence becomes available, modeling will be necessary to predict the effects on final outcomes (benefits and harms), account for heterogeneity in determining clinical and cost-effectiveness, and explore alternative screening program specifications. The natural history of disease (NHD) component will use statistical, mathematical, or calibration methods. This work aims to identify, review, and critically appraise the existing literature for alternative modeling approaches proposed for MCED that include an NHD component.MethodsModeling approaches for MCED screening that include an NHD component were identified from the literature, reviewed, and critically appraised. Purposively selected (non-MCED) cancer-screening models were also reviewed. The appraisal focused on the scope, data sources, evaluation approaches, and the structure and parameterization of the models.ResultsFive different MCED models incorporating an NHD component were identified and reviewed, alongside 4 additional (non-MCED) models. The critical appraisal highlighted several features of this literature. In the absence of trial evidence, MCED effects are based on predictions derived from test accuracy. These predictions rely on simplifying assumptions with unknown impacts, such as the stage-shift assumption used to estimate mortality impacts from predicted stage shifts. None of the MCED models fully characterized uncertainty in the NHD or examined uncertainty in the stage-shift assumption.ConclusionThere is currently no modeling approach for MCEDs that can integrate clinical study evidence. In support of policy, it is important that efforts are made to develop models that make the best use of data from the large and costly clinical studies being designed and implemented across the globe.HighlightsIn the absence of trial evidence, published estimates of the effects of multicancer early detection (MCED) tests are based on predictions derived from test accuracy.These predictions rely on simplifying assumptions, such as the stage-shift assumption used to estimate mortality effects from predicted stage shifts. The effects of such simplifying assumptions are mostly unknown.None of the existing MCED models fully characterize uncertainty in the natural history of disease; none examine uncertainty in the stage-shift assumption.Currently, there is no modeling approach that can integrate clinical study evidence.
期刊介绍:
Medical Decision Making offers rigorous and systematic approaches to decision making that are designed to improve the health and clinical care of individuals and to assist with health care policy development. Using the fundamentals of decision analysis and theory, economic evaluation, and evidence based quality assessment, Medical Decision Making presents both theoretical and practical statistical and modeling techniques and methods from a variety of disciplines.