Sung Min Moon, Jaehoon Kim, Jaeheon Seol, Seonguk Yang, Duwon Jung, Chang Yup Kim, Chang Seok Kim, Ki Wung Chung, Young-Suk Jung, Seung-Cheol Chang, Hae Young Chung, Jaewon Lee
{"title":"牛磺酸在帕金森病啮齿动物模型中的神经保护作用包括调节星形胶质细胞介导的炎症。","authors":"Sung Min Moon, Jaehoon Kim, Jaeheon Seol, Seonguk Yang, Duwon Jung, Chang Yup Kim, Chang Seok Kim, Ki Wung Chung, Young-Suk Jung, Seung-Cheol Chang, Hae Young Chung, Jaewon Lee","doi":"10.1007/s12272-025-01563-z","DOIUrl":null,"url":null,"abstract":"<div><p>Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons due to oxidative stress and inflammation. Targeting inflammation and oxidative stress offers a promising means of slowing PD progression. Taurine, a naturally occurring amino sulfonic acid, has demonstrated potent antioxidant properties, thereby preventing cell death. While taurine has been studied for its potential to restrain the progression of Alzheimer’s disease and mitigate microglial activation, its impact on astrocyte activation in PD models remains underexplored. Here, we found that taurine significantly reduces astroglial activation in MPP<sup>+</sup>-induced primary astrocytes by inhibiting the NF-κB pathway. Additionally, in vivo experiments in MPTP-induced PD models using male C57BL/6 mice showed that taurine improved motor function, protected against dopaminergic neuronal loss, and reduced glial activation in the striatum and substantia nigra. These findings highlight that the anti-inflammatory effects of taurine involve the inhibition of astroglial activation, suggesting that taurine has therapeutic potential in PD.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":"48 7-8","pages":"814 - 829"},"PeriodicalIF":7.5000,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuroprotective effects of taurine in a rodent model of parkinson’s disease involve modulating astrocyte-mediated inflammation\",\"authors\":\"Sung Min Moon, Jaehoon Kim, Jaeheon Seol, Seonguk Yang, Duwon Jung, Chang Yup Kim, Chang Seok Kim, Ki Wung Chung, Young-Suk Jung, Seung-Cheol Chang, Hae Young Chung, Jaewon Lee\",\"doi\":\"10.1007/s12272-025-01563-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons due to oxidative stress and inflammation. Targeting inflammation and oxidative stress offers a promising means of slowing PD progression. Taurine, a naturally occurring amino sulfonic acid, has demonstrated potent antioxidant properties, thereby preventing cell death. While taurine has been studied for its potential to restrain the progression of Alzheimer’s disease and mitigate microglial activation, its impact on astrocyte activation in PD models remains underexplored. Here, we found that taurine significantly reduces astroglial activation in MPP<sup>+</sup>-induced primary astrocytes by inhibiting the NF-κB pathway. Additionally, in vivo experiments in MPTP-induced PD models using male C57BL/6 mice showed that taurine improved motor function, protected against dopaminergic neuronal loss, and reduced glial activation in the striatum and substantia nigra. These findings highlight that the anti-inflammatory effects of taurine involve the inhibition of astroglial activation, suggesting that taurine has therapeutic potential in PD.</p></div>\",\"PeriodicalId\":8287,\"journal\":{\"name\":\"Archives of Pharmacal Research\",\"volume\":\"48 7-8\",\"pages\":\"814 - 829\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Pharmacal Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12272-025-01563-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Pharmacal Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12272-025-01563-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Neuroprotective effects of taurine in a rodent model of parkinson’s disease involve modulating astrocyte-mediated inflammation
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons due to oxidative stress and inflammation. Targeting inflammation and oxidative stress offers a promising means of slowing PD progression. Taurine, a naturally occurring amino sulfonic acid, has demonstrated potent antioxidant properties, thereby preventing cell death. While taurine has been studied for its potential to restrain the progression of Alzheimer’s disease and mitigate microglial activation, its impact on astrocyte activation in PD models remains underexplored. Here, we found that taurine significantly reduces astroglial activation in MPP+-induced primary astrocytes by inhibiting the NF-κB pathway. Additionally, in vivo experiments in MPTP-induced PD models using male C57BL/6 mice showed that taurine improved motor function, protected against dopaminergic neuronal loss, and reduced glial activation in the striatum and substantia nigra. These findings highlight that the anti-inflammatory effects of taurine involve the inhibition of astroglial activation, suggesting that taurine has therapeutic potential in PD.
期刊介绍:
Archives of Pharmacal Research is the official journal of the Pharmaceutical Society of Korea and has been published since 1976. Archives of Pharmacal Research is an interdisciplinary journal devoted to the publication of original scientific research papers and reviews in the fields of drug discovery, drug development, and drug actions with a view to providing fundamental and novel information on drugs and drug candidates.