SPaGS:快速和准确的三维高斯溅射球面全景

IF 2.9 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
J. Li, F. Hahlbohm, T. Scholz, M. Eisemann, J.P. Tauscher, M. Magnor
{"title":"SPaGS:快速和准确的三维高斯溅射球面全景","authors":"J. Li,&nbsp;F. Hahlbohm,&nbsp;T. Scholz,&nbsp;M. Eisemann,&nbsp;J.P. Tauscher,&nbsp;M. Magnor","doi":"10.1111/cgf.70171","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In this paper we propose SPaGS, a high-quality, real-time free-viewpoint rendering approach from 360-degree panoramic images. While existing methods building on Neural Radiance Fields or 3D Gaussian Splatting have difficulties to achieve real-time frame rates and high-quality results at the same time, SPaGS combines the advantages of an explicit 3D Gaussian-based scene representation and ray casting-based rendering to attain fast and accurate results. Central to our new approach is the exact calculation of axis-aligned bounding boxes for spherical images that significantly accelerates omnidirectional ray casting of 3D Gaussians. We also present a new dataset consisting of ten real-world scenes recorded with a drone that incorporates both calibrated 360-degree panoramic images as well as perspective images captured simultaneously, i.e., with the same flight trajectory. Our evaluation on this new dataset as well as established benchmarks demonstrates that SPaGS excels over state-of-the-art methods in terms of both rendering quality and speed.</p>\n </div>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.70171","citationCount":"0","resultStr":"{\"title\":\"SPaGS: Fast and Accurate 3D Gaussian Splatting for Spherical Panoramas\",\"authors\":\"J. Li,&nbsp;F. Hahlbohm,&nbsp;T. Scholz,&nbsp;M. Eisemann,&nbsp;J.P. Tauscher,&nbsp;M. Magnor\",\"doi\":\"10.1111/cgf.70171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>In this paper we propose SPaGS, a high-quality, real-time free-viewpoint rendering approach from 360-degree panoramic images. While existing methods building on Neural Radiance Fields or 3D Gaussian Splatting have difficulties to achieve real-time frame rates and high-quality results at the same time, SPaGS combines the advantages of an explicit 3D Gaussian-based scene representation and ray casting-based rendering to attain fast and accurate results. Central to our new approach is the exact calculation of axis-aligned bounding boxes for spherical images that significantly accelerates omnidirectional ray casting of 3D Gaussians. We also present a new dataset consisting of ten real-world scenes recorded with a drone that incorporates both calibrated 360-degree panoramic images as well as perspective images captured simultaneously, i.e., with the same flight trajectory. Our evaluation on this new dataset as well as established benchmarks demonstrates that SPaGS excels over state-of-the-art methods in terms of both rendering quality and speed.</p>\\n </div>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"44 4\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.70171\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70171\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70171","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了SPaGS,一种高质量、实时的360度全景图像自由视点渲染方法。虽然现有的基于Neural Radiance Fields或3D Gaussian Splatting的方法难以同时实现实时帧率和高质量的结果,但SPaGS结合了明确的基于3D高斯的场景表示和基于光线投射的渲染的优点,可以获得快速准确的结果。我们新方法的核心是精确计算球面图像的轴向边界框,这大大加速了3D高斯图像的全向光线投射。我们还提出了一个新的数据集,由无人机记录的十个真实世界场景组成,其中包含校准的360度全景图像以及同时捕获的透视图像,即具有相同的飞行轨迹。我们对这个新数据集以及已建立的基准测试的评估表明,SPaGS在渲染质量和速度方面优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

SPaGS: Fast and Accurate 3D Gaussian Splatting for Spherical Panoramas

SPaGS: Fast and Accurate 3D Gaussian Splatting for Spherical Panoramas

In this paper we propose SPaGS, a high-quality, real-time free-viewpoint rendering approach from 360-degree panoramic images. While existing methods building on Neural Radiance Fields or 3D Gaussian Splatting have difficulties to achieve real-time frame rates and high-quality results at the same time, SPaGS combines the advantages of an explicit 3D Gaussian-based scene representation and ray casting-based rendering to attain fast and accurate results. Central to our new approach is the exact calculation of axis-aligned bounding boxes for spherical images that significantly accelerates omnidirectional ray casting of 3D Gaussians. We also present a new dataset consisting of ten real-world scenes recorded with a drone that incorporates both calibrated 360-degree panoramic images as well as perspective images captured simultaneously, i.e., with the same flight trajectory. Our evaluation on this new dataset as well as established benchmarks demonstrates that SPaGS excels over state-of-the-art methods in terms of both rendering quality and speed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Graphics Forum
Computer Graphics Forum 工程技术-计算机:软件工程
CiteScore
5.80
自引率
12.00%
发文量
175
审稿时长
3-6 weeks
期刊介绍: Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信