神经场多视图形状-从极化

IF 2.9 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
R. Wanaset, G. C. Guarnera, W. A. P. Smith
{"title":"神经场多视图形状-从极化","authors":"R. Wanaset,&nbsp;G. C. Guarnera,&nbsp;W. A. P. Smith","doi":"10.1111/cgf.70177","DOIUrl":null,"url":null,"abstract":"<p>We tackle the problem of multi-view shape-from-polarisation using a neural implicit surface representation and volume rendering of a polarised neural radiance field (P-NeRF). The P-NeRF predicts the parameters of a mixed diffuse/specular polarisation model. This directly relates polarisation behaviour to the surface normal without explicitly modelling illumination or BRDF. Via the implicit surface representation, this allows polarisation to directly inform the estimated geometry. This improves shape estimation and also allows separation of diffuse and specular radiance. For polarimetric images from division-of-focal-plane sensors, we fit directly to the raw data without first demosaicing. This avoids fitting to demosaicing artefacts and we propose losses and saturation masking specifically to handle HDR measurements. Our method achieves state-of-the-art performance on the PANDORA benchmark. We apply our method in a lightstage setting, providing single-shot face capture.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural field multi-view shape-from-polarisation\",\"authors\":\"R. Wanaset,&nbsp;G. C. Guarnera,&nbsp;W. A. P. Smith\",\"doi\":\"10.1111/cgf.70177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We tackle the problem of multi-view shape-from-polarisation using a neural implicit surface representation and volume rendering of a polarised neural radiance field (P-NeRF). The P-NeRF predicts the parameters of a mixed diffuse/specular polarisation model. This directly relates polarisation behaviour to the surface normal without explicitly modelling illumination or BRDF. Via the implicit surface representation, this allows polarisation to directly inform the estimated geometry. This improves shape estimation and also allows separation of diffuse and specular radiance. For polarimetric images from division-of-focal-plane sensors, we fit directly to the raw data without first demosaicing. This avoids fitting to demosaicing artefacts and we propose losses and saturation masking specifically to handle HDR measurements. Our method achieves state-of-the-art performance on the PANDORA benchmark. We apply our method in a lightstage setting, providing single-shot face capture.</p>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"44 4\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70177\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70177","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

我们使用神经隐式表面表示和极化神经辐射场(P-NeRF)的体渲染来解决多视图偏振形状的问题。P-NeRF预测了混合漫射/镜面偏振模型的参数。这直接将极化行为与表面法线联系起来,而无需明确建模照明或BRDF。通过隐式表面表示,这允许偏振直接告知估计的几何形状。这改善了形状估计,也允许分离漫射和镜面辐射。对于来自焦平面分割传感器的偏振图像,我们直接拟合原始数据而不首先去马赛克。这避免了拟合去马赛克伪影,我们提出了专门处理HDR测量的损失和饱和掩蔽。我们的方法在PANDORA基准上实现了最先进的性能。我们在灯光舞台设置中应用我们的方法,提供单镜头面部捕捉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural field multi-view shape-from-polarisation

We tackle the problem of multi-view shape-from-polarisation using a neural implicit surface representation and volume rendering of a polarised neural radiance field (P-NeRF). The P-NeRF predicts the parameters of a mixed diffuse/specular polarisation model. This directly relates polarisation behaviour to the surface normal without explicitly modelling illumination or BRDF. Via the implicit surface representation, this allows polarisation to directly inform the estimated geometry. This improves shape estimation and also allows separation of diffuse and specular radiance. For polarimetric images from division-of-focal-plane sensors, we fit directly to the raw data without first demosaicing. This avoids fitting to demosaicing artefacts and we propose losses and saturation masking specifically to handle HDR measurements. Our method achieves state-of-the-art performance on the PANDORA benchmark. We apply our method in a lightstage setting, providing single-shot face capture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Graphics Forum
Computer Graphics Forum 工程技术-计算机:软件工程
CiteScore
5.80
自引率
12.00%
发文量
175
审稿时长
3-6 weeks
期刊介绍: Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信