{"title":"革命咖啡酸生产:先进的微生物代谢工程和合成生物学方法","authors":"Jintao Lu, Beining Wang, Xiqiang Liu, Jung-Kul Lee, Vipin Chandra Kalia, Chunjie Gong","doi":"10.1002/biot.70091","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Caffeic acid, a high-value natural phenolic compound synthesized through plant metabolism, plays a critical role in producing phenylpropanoid derivatives and serves as a direct precursor to several key phenolic acids. As a food additive and medicine, caffeic acid has garnered significant attention for its potential in various applications. Recent advances in synthetic biology and metabolic engineering have enabled its biosynthesis via microbial cell factories. This review summarizes five strategies for optimizing caffeic acid production: caffeic acid biosynthetic pathway, modification of metabolic pathway, systems biology and synthetic biology, cofactor engineering, and modular co-culture. However, caffeic acid production via microbial chassis faces bottlenecks such as limited precursor availability for biosynthesis, toxicity from metabolic intermediates, inefficient cofactor utilization, and over-reliance on conventional host microorganisms. Breaking through these bottlenecks by integrating the five strategies outlined is expected to further increase caffeic acid production.</p>\n </div>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"20 8","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revolutionizing Caffeic Acid Production: Advanced Microbial Metabolic Engineering and Synthetic Biology Approaches\",\"authors\":\"Jintao Lu, Beining Wang, Xiqiang Liu, Jung-Kul Lee, Vipin Chandra Kalia, Chunjie Gong\",\"doi\":\"10.1002/biot.70091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Caffeic acid, a high-value natural phenolic compound synthesized through plant metabolism, plays a critical role in producing phenylpropanoid derivatives and serves as a direct precursor to several key phenolic acids. As a food additive and medicine, caffeic acid has garnered significant attention for its potential in various applications. Recent advances in synthetic biology and metabolic engineering have enabled its biosynthesis via microbial cell factories. This review summarizes five strategies for optimizing caffeic acid production: caffeic acid biosynthetic pathway, modification of metabolic pathway, systems biology and synthetic biology, cofactor engineering, and modular co-culture. However, caffeic acid production via microbial chassis faces bottlenecks such as limited precursor availability for biosynthesis, toxicity from metabolic intermediates, inefficient cofactor utilization, and over-reliance on conventional host microorganisms. Breaking through these bottlenecks by integrating the five strategies outlined is expected to further increase caffeic acid production.</p>\\n </div>\",\"PeriodicalId\":134,\"journal\":{\"name\":\"Biotechnology Journal\",\"volume\":\"20 8\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/biot.70091\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biot.70091","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Caffeic acid, a high-value natural phenolic compound synthesized through plant metabolism, plays a critical role in producing phenylpropanoid derivatives and serves as a direct precursor to several key phenolic acids. As a food additive and medicine, caffeic acid has garnered significant attention for its potential in various applications. Recent advances in synthetic biology and metabolic engineering have enabled its biosynthesis via microbial cell factories. This review summarizes five strategies for optimizing caffeic acid production: caffeic acid biosynthetic pathway, modification of metabolic pathway, systems biology and synthetic biology, cofactor engineering, and modular co-culture. However, caffeic acid production via microbial chassis faces bottlenecks such as limited precursor availability for biosynthesis, toxicity from metabolic intermediates, inefficient cofactor utilization, and over-reliance on conventional host microorganisms. Breaking through these bottlenecks by integrating the five strategies outlined is expected to further increase caffeic acid production.
Biotechnology JournalBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍:
Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances.
In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office.
BTJ promotes a special emphasis on:
Systems Biotechnology
Synthetic Biology and Metabolic Engineering
Nanobiotechnology and Biomaterials
Tissue engineering, Regenerative Medicine and Stem cells
Gene Editing, Gene therapy and Immunotherapy
Omics technologies
Industrial Biotechnology, Biopharmaceuticals and Biocatalysis
Bioprocess engineering and Downstream processing
Plant Biotechnology
Biosafety, Biotech Ethics, Science Communication
Methods and Advances.