BenchQC:量子计算的基准测试工具包

IF 4.8 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nia Pollard, Kamal Choudhary
{"title":"BenchQC:量子计算的基准测试工具包","authors":"Nia Pollard,&nbsp;Kamal Choudhary","doi":"10.1002/jcc.70202","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The Variational Quantum Eigensolver (VQE) is a widely studied hybrid classical-quantum algorithm for approximating ground-state energies in molecular and materials systems. This study benchmarks the performance of the VQE for calculating ground-state energies of small aluminum clusters (<span></span><math>\n <semantics>\n <mrow>\n <mtext>Al</mtext>\n <msup>\n <mrow></mrow>\n <mrow>\n <mo>−</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\mathrm{Al}}^{-} $$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mtext>Al</mtext>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{Al}}_2 $$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <mtext>Al</mtext>\n <msubsup>\n <mrow></mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n <mrow>\n <mo>−</mo>\n </mrow>\n </msubsup>\n </mrow>\n <annotation>$$ {\\mathrm{Al}}_3^{-} $$</annotation>\n </semantics></math>) within a quantum-density functional theory (DFT) embedding framework, systematically varying key parameters: (I) classical optimizers, (II) circuit types, (III) number of repetitions, (IV) simulator types, (V) basis sets, and (VI) noise models. All calculations were performed using quantum simulators to evaluate VQE performance under both idealized and noise-augmented conditions. Our findings demonstrate that certain optimizers converge efficiently, while circuit choice and basis set selection have a marked impact on energy estimates, with higher-level basis sets closely matching classical computation data from Numerical Python Solver (NumPy) and Computational Chemistry Comparison and Benchmark DataBase (CCCBDB). To approximate realistic conditions, we employed IBM noise models to simulate the effects of hardware noise. The results showed close agreement with CCCBDB benchmarks, with percent errors consistently below 0.2%. The results demonstrate that VQE can approximate energy estimates under simulated conditions for small aluminum clusters and highlight the importance of optimizing quantum-DFT parameters to balance computational cost and precision. This work contributes to ongoing efforts to benchmark VQE in practical settings and lays the groundwork for future benchmarking tools for quantum chemistry and materials applications.</p>\n </div>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 21","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BenchQC: A Benchmarking Toolkit for Quantum Computation\",\"authors\":\"Nia Pollard,&nbsp;Kamal Choudhary\",\"doi\":\"10.1002/jcc.70202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The Variational Quantum Eigensolver (VQE) is a widely studied hybrid classical-quantum algorithm for approximating ground-state energies in molecular and materials systems. This study benchmarks the performance of the VQE for calculating ground-state energies of small aluminum clusters (<span></span><math>\\n <semantics>\\n <mrow>\\n <mtext>Al</mtext>\\n <msup>\\n <mrow></mrow>\\n <mrow>\\n <mo>−</mo>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{Al}}^{-} $$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mtext>Al</mtext>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{Al}}_2 $$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mrow>\\n <mtext>Al</mtext>\\n <msubsup>\\n <mrow></mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n <mrow>\\n <mo>−</mo>\\n </mrow>\\n </msubsup>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{Al}}_3^{-} $$</annotation>\\n </semantics></math>) within a quantum-density functional theory (DFT) embedding framework, systematically varying key parameters: (I) classical optimizers, (II) circuit types, (III) number of repetitions, (IV) simulator types, (V) basis sets, and (VI) noise models. All calculations were performed using quantum simulators to evaluate VQE performance under both idealized and noise-augmented conditions. Our findings demonstrate that certain optimizers converge efficiently, while circuit choice and basis set selection have a marked impact on energy estimates, with higher-level basis sets closely matching classical computation data from Numerical Python Solver (NumPy) and Computational Chemistry Comparison and Benchmark DataBase (CCCBDB). To approximate realistic conditions, we employed IBM noise models to simulate the effects of hardware noise. The results showed close agreement with CCCBDB benchmarks, with percent errors consistently below 0.2%. The results demonstrate that VQE can approximate energy estimates under simulated conditions for small aluminum clusters and highlight the importance of optimizing quantum-DFT parameters to balance computational cost and precision. This work contributes to ongoing efforts to benchmark VQE in practical settings and lays the groundwork for future benchmarking tools for quantum chemistry and materials applications.</p>\\n </div>\",\"PeriodicalId\":188,\"journal\":{\"name\":\"Journal of Computational Chemistry\",\"volume\":\"46 21\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70202\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70202","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

变分量子本征求解器(VQE)是一种被广泛研究的用于近似分子和材料系统基态能量的经典-量子混合算法。本研究对VQE计算小型铝团簇(Al−$$ {\mathrm{Al}}^{-} $$,Al 2 $$ {\mathrm{Al}}_2 $$,和Al 3−$$ {\mathrm{Al}}_3^{-} $$)在量子密度泛函理论(DFT)嵌入框架内,系统地改变关键参数:(I)经典优化器,(II)电路类型,(III)重复次数,(IV)模拟器类型,(V)基集,(VI)噪声模型。所有的计算都使用量子模拟器来评估VQE在理想和噪声增强条件下的性能。我们的研究结果表明,某些优化器可以有效地收敛,而电路选择和基集选择对能量估计有显著影响,更高级别的基集与来自Numerical Python Solver (NumPy)和Computational Chemistry Comparison and Benchmark DataBase (CCCBDB)的经典计算数据密切匹配。为了接近现实条件,我们使用IBM噪声模型来模拟硬件噪声的影响。结果显示与CCCBDB基准非常一致,错误率始终低于0.2%. The results demonstrate that VQE can approximate energy estimates under simulated conditions for small aluminum clusters and highlight the importance of optimizing quantum-DFT parameters to balance computational cost and precision. This work contributes to ongoing efforts to benchmark VQE in practical settings and lays the groundwork for future benchmarking tools for quantum chemistry and materials applications.
本文章由计算机程序翻译,如有差异,请以英文原文为准。

BenchQC: A Benchmarking Toolkit for Quantum Computation

BenchQC: A Benchmarking Toolkit for Quantum Computation

The Variational Quantum Eigensolver (VQE) is a widely studied hybrid classical-quantum algorithm for approximating ground-state energies in molecular and materials systems. This study benchmarks the performance of the VQE for calculating ground-state energies of small aluminum clusters ( Al $$ {\mathrm{Al}}^{-} $$ , Al 2 $$ {\mathrm{Al}}_2 $$ , and Al 3 $$ {\mathrm{Al}}_3^{-} $$ ) within a quantum-density functional theory (DFT) embedding framework, systematically varying key parameters: (I) classical optimizers, (II) circuit types, (III) number of repetitions, (IV) simulator types, (V) basis sets, and (VI) noise models. All calculations were performed using quantum simulators to evaluate VQE performance under both idealized and noise-augmented conditions. Our findings demonstrate that certain optimizers converge efficiently, while circuit choice and basis set selection have a marked impact on energy estimates, with higher-level basis sets closely matching classical computation data from Numerical Python Solver (NumPy) and Computational Chemistry Comparison and Benchmark DataBase (CCCBDB). To approximate realistic conditions, we employed IBM noise models to simulate the effects of hardware noise. The results showed close agreement with CCCBDB benchmarks, with percent errors consistently below 0.2%. The results demonstrate that VQE can approximate energy estimates under simulated conditions for small aluminum clusters and highlight the importance of optimizing quantum-DFT parameters to balance computational cost and precision. This work contributes to ongoing efforts to benchmark VQE in practical settings and lays the groundwork for future benchmarking tools for quantum chemistry and materials applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信