{"title":"传统油炸与微波油炸对炸薯条品质特性的影响","authors":"Yash Shah, Xu Zhou, Juming Tang, Pawan Singh Takhar","doi":"10.1111/1750-3841.70441","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n <h3> ABSTRACT</h3>\n \n <p>Fried foods have a widespread appeal worldwide, but consumers are cautious about their high-calorie density and oil content. We evaluated microwave frying (MF) at 2.45 and 5.8 GHz frequencies as potential alternatives to conventional frying (CF) to produce fried foods containing less oil. MF is expected to lead to higher magnitudes of pressure in the food matrix than CF, which can provide higher resistance to oil penetration into the food. Real-time temperature and pressure measured using fiber optic sensors showed that MF resulted in faster sample heating and generated higher internal pressure than CF. The peak sample temperature and internal gauge pressure were the highest for MF at 2.45 GHz (107.3°C, 24.9 kPa), followed by MF at 5.8 GHz (104.1°C, 20.8 kPa) and CF (100.5°C, 13.8 kPa). The results indicated that the microwaves were not completely attenuated while traveling through the bulk oil and could penetrate the French fries. Below a sample moisture content of 3 g/g solids, the oil content increased rapidly with reducing moisture content for CF; the increase in oil content was relatively slower for MF at 5.8 GHz and negligible for MF at 2.45 GHz. This indicated that MF is an effective substitute for CF to produce lower oil content French fries with similar endpoint moisture content. The stress relaxation data showed that MF at 5.8 GHz produced stiffer (crunchier) French fries, which could be due to the intense crust heating.</p>\n </section>\n \n <section>\n \n <h3> Practical Applications</h3>\n \n <p>The current study showed that microwave frying can reduce frying times and produce French fries with lower oil content than conventional frying. This can help the food industry reduce processing times and offer consumers healthier fried foods. The insights generated from this work can help design process optimization studies and guide the physics-based modeling of microwave frying.</p>\n </section>\n </div>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":"90 8","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1750-3841.70441","citationCount":"0","resultStr":"{\"title\":\"The Effect of Conventional and Microwave Frying on the Quality Characteristics of French Fries\",\"authors\":\"Yash Shah, Xu Zhou, Juming Tang, Pawan Singh Takhar\",\"doi\":\"10.1111/1750-3841.70441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <section>\\n \\n <h3> ABSTRACT</h3>\\n \\n <p>Fried foods have a widespread appeal worldwide, but consumers are cautious about their high-calorie density and oil content. We evaluated microwave frying (MF) at 2.45 and 5.8 GHz frequencies as potential alternatives to conventional frying (CF) to produce fried foods containing less oil. MF is expected to lead to higher magnitudes of pressure in the food matrix than CF, which can provide higher resistance to oil penetration into the food. Real-time temperature and pressure measured using fiber optic sensors showed that MF resulted in faster sample heating and generated higher internal pressure than CF. The peak sample temperature and internal gauge pressure were the highest for MF at 2.45 GHz (107.3°C, 24.9 kPa), followed by MF at 5.8 GHz (104.1°C, 20.8 kPa) and CF (100.5°C, 13.8 kPa). The results indicated that the microwaves were not completely attenuated while traveling through the bulk oil and could penetrate the French fries. Below a sample moisture content of 3 g/g solids, the oil content increased rapidly with reducing moisture content for CF; the increase in oil content was relatively slower for MF at 5.8 GHz and negligible for MF at 2.45 GHz. This indicated that MF is an effective substitute for CF to produce lower oil content French fries with similar endpoint moisture content. The stress relaxation data showed that MF at 5.8 GHz produced stiffer (crunchier) French fries, which could be due to the intense crust heating.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Practical Applications</h3>\\n \\n <p>The current study showed that microwave frying can reduce frying times and produce French fries with lower oil content than conventional frying. This can help the food industry reduce processing times and offer consumers healthier fried foods. The insights generated from this work can help design process optimization studies and guide the physics-based modeling of microwave frying.</p>\\n </section>\\n </div>\",\"PeriodicalId\":193,\"journal\":{\"name\":\"Journal of Food Science\",\"volume\":\"90 8\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1750-3841.70441\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://ift.onlinelibrary.wiley.com/doi/10.1111/1750-3841.70441\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://ift.onlinelibrary.wiley.com/doi/10.1111/1750-3841.70441","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
The Effect of Conventional and Microwave Frying on the Quality Characteristics of French Fries
ABSTRACT
Fried foods have a widespread appeal worldwide, but consumers are cautious about their high-calorie density and oil content. We evaluated microwave frying (MF) at 2.45 and 5.8 GHz frequencies as potential alternatives to conventional frying (CF) to produce fried foods containing less oil. MF is expected to lead to higher magnitudes of pressure in the food matrix than CF, which can provide higher resistance to oil penetration into the food. Real-time temperature and pressure measured using fiber optic sensors showed that MF resulted in faster sample heating and generated higher internal pressure than CF. The peak sample temperature and internal gauge pressure were the highest for MF at 2.45 GHz (107.3°C, 24.9 kPa), followed by MF at 5.8 GHz (104.1°C, 20.8 kPa) and CF (100.5°C, 13.8 kPa). The results indicated that the microwaves were not completely attenuated while traveling through the bulk oil and could penetrate the French fries. Below a sample moisture content of 3 g/g solids, the oil content increased rapidly with reducing moisture content for CF; the increase in oil content was relatively slower for MF at 5.8 GHz and negligible for MF at 2.45 GHz. This indicated that MF is an effective substitute for CF to produce lower oil content French fries with similar endpoint moisture content. The stress relaxation data showed that MF at 5.8 GHz produced stiffer (crunchier) French fries, which could be due to the intense crust heating.
Practical Applications
The current study showed that microwave frying can reduce frying times and produce French fries with lower oil content than conventional frying. This can help the food industry reduce processing times and offer consumers healthier fried foods. The insights generated from this work can help design process optimization studies and guide the physics-based modeling of microwave frying.
期刊介绍:
The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science.
The range of topics covered in the journal include:
-Concise Reviews and Hypotheses in Food Science
-New Horizons in Food Research
-Integrated Food Science
-Food Chemistry
-Food Engineering, Materials Science, and Nanotechnology
-Food Microbiology and Safety
-Sensory and Consumer Sciences
-Health, Nutrition, and Food
-Toxicology and Chemical Food Safety
The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.