fluid - segnet:用于OCT b扫描流体分割的扩展卷积多维损失驱动Y-Net

IF 4.9 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Xiaozhong Xue , Weiwei Du , Qinghua Hu , Masahiro Miyake , Keina Sado
{"title":"fluid - segnet:用于OCT b扫描流体分割的扩展卷积多维损失驱动Y-Net","authors":"Xiaozhong Xue ,&nbsp;Weiwei Du ,&nbsp;Qinghua Hu ,&nbsp;Masahiro Miyake ,&nbsp;Keina Sado","doi":"10.1016/j.compmedimag.2025.102613","DOIUrl":null,"url":null,"abstract":"<div><div>Optical Coherence Tomography (OCT) is a widely utilized imaging modality in clinical ophthalmology, particularly for retinal imaging. B-scan is a two-dimensional slice of the OCT volume. It enables high-resolution cross-sectional visualization of retinal layers, facilitating the analysis of retinal structure and the detection of pathological features such as fluid regions. Accurate segmentation of these fluid regions is crucial not only for determining appropriate treatment dosages but also serves as a foundation for the development of automated retinal disease diagnosis systems and visual acuity prediction models. However, the segmentation of fluid regions from OCT B-scans poses two major challenges: (1) the difficulty in delineating fine details and small fluid regions, and (2) the heterogeneity of fluid regions, which often leads to under-segmentation. This study introduces Fluid-SegNet, a novel deep learning-based segmentation framework designed to enhance the accuracy of fluid region segmentation in OCT B-scans. The proposed method is evaluated on three public datasets, UMN, AROI, and OIMHS. achieving mean Dice of 0.8725, 0.6967, and 0.8020, respectively. These results highlight the effectiveness and robustness of Fluid-SegNet in segmenting fluid regions across varied datasets and imaging conditions. Compared to existing methods, Fluid-SegNet effectively addresses the two aforementioned challenges. The source code for Fluid-SegNet is publicly available at: <span><span>https://github.com/xuexiaozhong/Fluid-SegNet</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"124 ","pages":"Article 102613"},"PeriodicalIF":4.9000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluid-SegNet: Multi-dimensional loss-driven Y-Net with dilated convolutions for OCT B-scan fluid segmentation\",\"authors\":\"Xiaozhong Xue ,&nbsp;Weiwei Du ,&nbsp;Qinghua Hu ,&nbsp;Masahiro Miyake ,&nbsp;Keina Sado\",\"doi\":\"10.1016/j.compmedimag.2025.102613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Optical Coherence Tomography (OCT) is a widely utilized imaging modality in clinical ophthalmology, particularly for retinal imaging. B-scan is a two-dimensional slice of the OCT volume. It enables high-resolution cross-sectional visualization of retinal layers, facilitating the analysis of retinal structure and the detection of pathological features such as fluid regions. Accurate segmentation of these fluid regions is crucial not only for determining appropriate treatment dosages but also serves as a foundation for the development of automated retinal disease diagnosis systems and visual acuity prediction models. However, the segmentation of fluid regions from OCT B-scans poses two major challenges: (1) the difficulty in delineating fine details and small fluid regions, and (2) the heterogeneity of fluid regions, which often leads to under-segmentation. This study introduces Fluid-SegNet, a novel deep learning-based segmentation framework designed to enhance the accuracy of fluid region segmentation in OCT B-scans. The proposed method is evaluated on three public datasets, UMN, AROI, and OIMHS. achieving mean Dice of 0.8725, 0.6967, and 0.8020, respectively. These results highlight the effectiveness and robustness of Fluid-SegNet in segmenting fluid regions across varied datasets and imaging conditions. Compared to existing methods, Fluid-SegNet effectively addresses the two aforementioned challenges. The source code for Fluid-SegNet is publicly available at: <span><span>https://github.com/xuexiaozhong/Fluid-SegNet</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":50631,\"journal\":{\"name\":\"Computerized Medical Imaging and Graphics\",\"volume\":\"124 \",\"pages\":\"Article 102613\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computerized Medical Imaging and Graphics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895611125001223\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611125001223","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

光学相干断层扫描(OCT)是一种广泛应用于临床眼科的成像方式,尤其是视网膜成像。b扫描是OCT体积的二维切片。它可以实现视网膜层的高分辨率横截面可视化,便于分析视网膜结构和检测诸如流体区域等病理特征。这些流体区域的准确分割不仅对确定适当的治疗剂量至关重要,而且也是开发自动视网膜疾病诊断系统和视力预测模型的基础。然而,从OCT b扫描中分割流体区域面临两个主要挑战:(1)难以描绘精细细节和小流体区域;(2)流体区域的非均质性,往往导致分割不足。本研究引入了一种新的基于深度学习的分割框架fluid - segnet,旨在提高OCT b扫描中流体区域分割的准确性。在UMN、AROI和OIMHS三个公共数据集上对该方法进行了评估。平均骰子分别为0.8725、0.6967和0.8020。这些结果突出了fluid - segnet在不同数据集和成像条件下分割流体区域的有效性和鲁棒性。与现有方法相比,Fluid-SegNet有效地解决了上述两个挑战。Fluid-SegNet的源代码可在:https://github.com/xuexiaozhong/Fluid-SegNet公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fluid-SegNet: Multi-dimensional loss-driven Y-Net with dilated convolutions for OCT B-scan fluid segmentation
Optical Coherence Tomography (OCT) is a widely utilized imaging modality in clinical ophthalmology, particularly for retinal imaging. B-scan is a two-dimensional slice of the OCT volume. It enables high-resolution cross-sectional visualization of retinal layers, facilitating the analysis of retinal structure and the detection of pathological features such as fluid regions. Accurate segmentation of these fluid regions is crucial not only for determining appropriate treatment dosages but also serves as a foundation for the development of automated retinal disease diagnosis systems and visual acuity prediction models. However, the segmentation of fluid regions from OCT B-scans poses two major challenges: (1) the difficulty in delineating fine details and small fluid regions, and (2) the heterogeneity of fluid regions, which often leads to under-segmentation. This study introduces Fluid-SegNet, a novel deep learning-based segmentation framework designed to enhance the accuracy of fluid region segmentation in OCT B-scans. The proposed method is evaluated on three public datasets, UMN, AROI, and OIMHS. achieving mean Dice of 0.8725, 0.6967, and 0.8020, respectively. These results highlight the effectiveness and robustness of Fluid-SegNet in segmenting fluid regions across varied datasets and imaging conditions. Compared to existing methods, Fluid-SegNet effectively addresses the two aforementioned challenges. The source code for Fluid-SegNet is publicly available at: https://github.com/xuexiaozhong/Fluid-SegNet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.70
自引率
3.50%
发文量
71
审稿时长
26 days
期刊介绍: The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信