{"title":"基于厚度拉伸运动学模型的变角度牵引复合材料板静力和屈曲分析的高效有限元框架","authors":"Mohnish Kumar Sahu , Pokhraj Harshal , Prakash Chettri , Himanshu , Devesh Punera","doi":"10.1016/j.finel.2025.104415","DOIUrl":null,"url":null,"abstract":"<div><div>Variable Angle Tow (VAT) composites are advanced materials that enable spatial stiffness tailoring within the lamina through curvilinear fibre paths, in contrast to the conventional constant stiffness composites, which use straight fibre profiles. The analysis of such complex structures necessitates refined two-dimensional plate theories capable of accurately capturing their mechanical behaviour with optimal trade-off between accuracy and computational demand. This study presents static and buckling analysis of VAT composite plates using the Equivalent Single Layer (ESL)-based Higher Order Shear Deformation and Normal Theory (HOSNT12). The governing equations are solved using the finite element approach. A key novelty lies in the integration of HOSNT12 with the Gauss Point Change (GPC) strategy and its comparison with the Constant Stiffness Element (CSE) approach, including an investigation of varying Gauss point distributions. Unlike traditional ESL models, the proposed formulation captures thickness-stretching effects, making it well suited for moderately thick and thick composite plates. The study assesses the influence of fibre angle orientations on static and buckling behaviour in addition to the evaluation of the stress concentration around the central hole in VAT plates.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"251 ","pages":"Article 104415"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient finite element framework for static and buckling analysis of variable angle tow composite plates using thickness stretching kinematic model\",\"authors\":\"Mohnish Kumar Sahu , Pokhraj Harshal , Prakash Chettri , Himanshu , Devesh Punera\",\"doi\":\"10.1016/j.finel.2025.104415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Variable Angle Tow (VAT) composites are advanced materials that enable spatial stiffness tailoring within the lamina through curvilinear fibre paths, in contrast to the conventional constant stiffness composites, which use straight fibre profiles. The analysis of such complex structures necessitates refined two-dimensional plate theories capable of accurately capturing their mechanical behaviour with optimal trade-off between accuracy and computational demand. This study presents static and buckling analysis of VAT composite plates using the Equivalent Single Layer (ESL)-based Higher Order Shear Deformation and Normal Theory (HOSNT12). The governing equations are solved using the finite element approach. A key novelty lies in the integration of HOSNT12 with the Gauss Point Change (GPC) strategy and its comparison with the Constant Stiffness Element (CSE) approach, including an investigation of varying Gauss point distributions. Unlike traditional ESL models, the proposed formulation captures thickness-stretching effects, making it well suited for moderately thick and thick composite plates. The study assesses the influence of fibre angle orientations on static and buckling behaviour in addition to the evaluation of the stress concentration around the central hole in VAT plates.</div></div>\",\"PeriodicalId\":56133,\"journal\":{\"name\":\"Finite Elements in Analysis and Design\",\"volume\":\"251 \",\"pages\":\"Article 104415\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Elements in Analysis and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168874X25001040\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X25001040","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Efficient finite element framework for static and buckling analysis of variable angle tow composite plates using thickness stretching kinematic model
Variable Angle Tow (VAT) composites are advanced materials that enable spatial stiffness tailoring within the lamina through curvilinear fibre paths, in contrast to the conventional constant stiffness composites, which use straight fibre profiles. The analysis of such complex structures necessitates refined two-dimensional plate theories capable of accurately capturing their mechanical behaviour with optimal trade-off between accuracy and computational demand. This study presents static and buckling analysis of VAT composite plates using the Equivalent Single Layer (ESL)-based Higher Order Shear Deformation and Normal Theory (HOSNT12). The governing equations are solved using the finite element approach. A key novelty lies in the integration of HOSNT12 with the Gauss Point Change (GPC) strategy and its comparison with the Constant Stiffness Element (CSE) approach, including an investigation of varying Gauss point distributions. Unlike traditional ESL models, the proposed formulation captures thickness-stretching effects, making it well suited for moderately thick and thick composite plates. The study assesses the influence of fibre angle orientations on static and buckling behaviour in addition to the evaluation of the stress concentration around the central hole in VAT plates.
期刊介绍:
The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.