双胞苷GD3对阳离子DODAB囊泡亚凝胶、凝胶和流体相的影响

IF 2.2 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Julia B. Ejarque , Anna C.F. Couto , Thábata Matos , Evandro L. Duarte , M. Teresa Lamy , Julio H.K. Rozenfeld
{"title":"双胞苷GD3对阳离子DODAB囊泡亚凝胶、凝胶和流体相的影响","authors":"Julia B. Ejarque ,&nbsp;Anna C.F. Couto ,&nbsp;Thábata Matos ,&nbsp;Evandro L. Duarte ,&nbsp;M. Teresa Lamy ,&nbsp;Julio H.K. Rozenfeld","doi":"10.1016/j.bpc.2025.107503","DOIUrl":null,"url":null,"abstract":"<div><div>GD3 is a disialoganglioside overexpressed in several types of cancer cells. The synthetic cationic lipid DODAB has been successfully employed as a vaccine adjuvant, and would be suitable to enhance GD3 immunogenicity. Here, mixed dispersions of GD3 and DODAB were characterized by Differential Scanning Calorimetry (DSC) and Electron Paramagnetic Resonance (EPR) spectroscopy. GD3 is miscible with DODAB, and decreases the DODAB gel-fluid transition cooperativity. GD3 does not affect the temperature hysteresis between gel-fluid and fluid-gel transitions. GD3 does not affect the formation of a subgel phase in DODAB bilayers cooled below 15 °C. GD3 decreases the acyl chain packing of the DODAB subgel phase, which could explain the broad and shallow exothermic event between 5 °C and 20 °C that appears on thermograms of mixed dispersions. These results might contribute to the development of novel GD3-based cancer immunotherapies, including at the low temperatures involved in cold chain stability.</div></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"326 ","pages":"Article 107503"},"PeriodicalIF":2.2000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of disialoganglioside GD3 on the subgel, gel and fluid phases of cationic DODAB vesicles\",\"authors\":\"Julia B. Ejarque ,&nbsp;Anna C.F. Couto ,&nbsp;Thábata Matos ,&nbsp;Evandro L. Duarte ,&nbsp;M. Teresa Lamy ,&nbsp;Julio H.K. Rozenfeld\",\"doi\":\"10.1016/j.bpc.2025.107503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>GD3 is a disialoganglioside overexpressed in several types of cancer cells. The synthetic cationic lipid DODAB has been successfully employed as a vaccine adjuvant, and would be suitable to enhance GD3 immunogenicity. Here, mixed dispersions of GD3 and DODAB were characterized by Differential Scanning Calorimetry (DSC) and Electron Paramagnetic Resonance (EPR) spectroscopy. GD3 is miscible with DODAB, and decreases the DODAB gel-fluid transition cooperativity. GD3 does not affect the temperature hysteresis between gel-fluid and fluid-gel transitions. GD3 does not affect the formation of a subgel phase in DODAB bilayers cooled below 15 °C. GD3 decreases the acyl chain packing of the DODAB subgel phase, which could explain the broad and shallow exothermic event between 5 °C and 20 °C that appears on thermograms of mixed dispersions. These results might contribute to the development of novel GD3-based cancer immunotherapies, including at the low temperatures involved in cold chain stability.</div></div>\",\"PeriodicalId\":8979,\"journal\":{\"name\":\"Biophysical chemistry\",\"volume\":\"326 \",\"pages\":\"Article 107503\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301462225001152\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301462225001152","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

GD3是一种在几种类型的癌细胞中过表达的双胞脂苷。合成的阳离子脂质DODAB已成功用作疫苗佐剂,可增强GD3的免疫原性。本文采用差示扫描量热法(DSC)和电子顺磁共振(EPR)对GD3和DODAB的混合分散体进行了表征。GD3与DODAB存在混相,降低了DODAB凝胶-流体的迁移协同性。GD3不影响凝胶-流体和流体-凝胶转变之间的温度滞后。GD3不影响冷却至15℃以下的DODAB双分子层中亚凝胶相的形成。GD3减少了DODAB亚凝胶相的酰基链堆积,这可以解释混合分散体在5°C至20°C之间出现的宽而浅的放热事件。这些结果可能有助于开发新的基于gd3的癌症免疫疗法,包括在低温下参与冷链稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of disialoganglioside GD3 on the subgel, gel and fluid phases of cationic DODAB vesicles

Effect of disialoganglioside GD3 on the subgel, gel and fluid phases of cationic DODAB vesicles
GD3 is a disialoganglioside overexpressed in several types of cancer cells. The synthetic cationic lipid DODAB has been successfully employed as a vaccine adjuvant, and would be suitable to enhance GD3 immunogenicity. Here, mixed dispersions of GD3 and DODAB were characterized by Differential Scanning Calorimetry (DSC) and Electron Paramagnetic Resonance (EPR) spectroscopy. GD3 is miscible with DODAB, and decreases the DODAB gel-fluid transition cooperativity. GD3 does not affect the temperature hysteresis between gel-fluid and fluid-gel transitions. GD3 does not affect the formation of a subgel phase in DODAB bilayers cooled below 15 °C. GD3 decreases the acyl chain packing of the DODAB subgel phase, which could explain the broad and shallow exothermic event between 5 °C and 20 °C that appears on thermograms of mixed dispersions. These results might contribute to the development of novel GD3-based cancer immunotherapies, including at the low temperatures involved in cold chain stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biophysical chemistry
Biophysical chemistry 生物-生化与分子生物学
CiteScore
6.10
自引率
10.50%
发文量
121
审稿时长
20 days
期刊介绍: Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信