V.K. Singh , S. Gayen , Sk. Soyeb Ali , R.C. Moharana , T. Chakrabarty , B. Koteswararao , S. Chattopadhyay , S.K. Panda
{"title":"S = 1/2 Heisenberg反铁磁交替自旋链体系KCuGa(PO4)2的磁性和电子结构研究","authors":"V.K. Singh , S. Gayen , Sk. Soyeb Ali , R.C. Moharana , T. Chakrabarty , B. Koteswararao , S. Chattopadhyay , S.K. Panda","doi":"10.1016/j.jmmm.2025.173391","DOIUrl":null,"url":null,"abstract":"<div><div>The correlation between low dimensionality and spin interactions can foster the emergence of exotic singlet states. Herein, we report a thorough investigation of the <span><math><mrow><mi>S</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math></span> spin chain system KCuGa(PO<sub>4</sub>)<sub>2</sub>, with alternating magnetic couplings <span><math><msub><mrow><mi>J</mi></mrow><mrow><mo>min</mo></mrow></msub></math></span> and <span><math><msub><mrow><mi>J</mi></mrow><mrow><mo>max</mo></mrow></msub></math></span>. A broad peak appears around 12 K, followed by an exponential decay in <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span>, indicating the existence of a spin gap in the ground state. The magnetic susceptibility data are modeled with the Heisenberg antiferromagnetic alternating spin chain, which gives <span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mo>min</mo></mrow></msub><mo>≈</mo><mo>−</mo><mn>6</mn><mo>.</mo><mn>47</mn></mrow></math></span> K, <span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mo>max</mo></mrow></msub><mo>≈</mo><mo>−</mo><mn>16</mn><mo>.</mo><mn>18</mn></mrow></math></span> K, alternation parameter (<span><math><mi>α</mi></math></span>) = <span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mo>min</mo></mrow></msub><mo>/</mo><msub><mrow><mi>J</mi></mrow><mrow><mo>max</mo></mrow></msub><mo>≈</mo><mn>0</mn><mo>.</mo><mn>40</mn></mrow></math></span>, and a spin gap (<span><math><mi>Δ</mi></math></span>) of 12 K. The <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> data were simulated using spin-dynamics based on the Landau–Lifshitz–Gilbert (LLG) method, showing excellent agreement with the experimental data. Magnetic heat capacity measurements further confirm the value of <span><math><mi>Δ</mi></math></span> as 12 K. Field-induced magnetic behavior is also observed. First-principles electronic structure calculations were performed to complement the experimental findings and investigate the electronic structure and exchange interactions. The calculated <span><math><mrow><mi>α</mi><mo>≈</mo><mn>0</mn><mo>.</mo><mn>40</mn></mrow></math></span> from DFT + <em>U</em> matches closely with the experimental estimate, confirming the validity of the HAFM alternating spin chain model.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"630 ","pages":"Article 173391"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic and electronic structure studies on S = 1/2 Heisenberg antiferromagnetic alternating spin chain system KCuGa(PO4)2\",\"authors\":\"V.K. Singh , S. Gayen , Sk. Soyeb Ali , R.C. Moharana , T. Chakrabarty , B. Koteswararao , S. Chattopadhyay , S.K. Panda\",\"doi\":\"10.1016/j.jmmm.2025.173391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The correlation between low dimensionality and spin interactions can foster the emergence of exotic singlet states. Herein, we report a thorough investigation of the <span><math><mrow><mi>S</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math></span> spin chain system KCuGa(PO<sub>4</sub>)<sub>2</sub>, with alternating magnetic couplings <span><math><msub><mrow><mi>J</mi></mrow><mrow><mo>min</mo></mrow></msub></math></span> and <span><math><msub><mrow><mi>J</mi></mrow><mrow><mo>max</mo></mrow></msub></math></span>. A broad peak appears around 12 K, followed by an exponential decay in <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span>, indicating the existence of a spin gap in the ground state. The magnetic susceptibility data are modeled with the Heisenberg antiferromagnetic alternating spin chain, which gives <span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mo>min</mo></mrow></msub><mo>≈</mo><mo>−</mo><mn>6</mn><mo>.</mo><mn>47</mn></mrow></math></span> K, <span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mo>max</mo></mrow></msub><mo>≈</mo><mo>−</mo><mn>16</mn><mo>.</mo><mn>18</mn></mrow></math></span> K, alternation parameter (<span><math><mi>α</mi></math></span>) = <span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mo>min</mo></mrow></msub><mo>/</mo><msub><mrow><mi>J</mi></mrow><mrow><mo>max</mo></mrow></msub><mo>≈</mo><mn>0</mn><mo>.</mo><mn>40</mn></mrow></math></span>, and a spin gap (<span><math><mi>Δ</mi></math></span>) of 12 K. The <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> data were simulated using spin-dynamics based on the Landau–Lifshitz–Gilbert (LLG) method, showing excellent agreement with the experimental data. Magnetic heat capacity measurements further confirm the value of <span><math><mi>Δ</mi></math></span> as 12 K. Field-induced magnetic behavior is also observed. First-principles electronic structure calculations were performed to complement the experimental findings and investigate the electronic structure and exchange interactions. The calculated <span><math><mrow><mi>α</mi><mo>≈</mo><mn>0</mn><mo>.</mo><mn>40</mn></mrow></math></span> from DFT + <em>U</em> matches closely with the experimental estimate, confirming the validity of the HAFM alternating spin chain model.</div></div>\",\"PeriodicalId\":366,\"journal\":{\"name\":\"Journal of Magnetism and Magnetic Materials\",\"volume\":\"630 \",\"pages\":\"Article 173391\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnetism and Magnetic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304885325006237\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetism and Magnetic Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304885325006237","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Magnetic and electronic structure studies on S = 1/2 Heisenberg antiferromagnetic alternating spin chain system KCuGa(PO4)2
The correlation between low dimensionality and spin interactions can foster the emergence of exotic singlet states. Herein, we report a thorough investigation of the spin chain system KCuGa(PO4)2, with alternating magnetic couplings and . A broad peak appears around 12 K, followed by an exponential decay in , indicating the existence of a spin gap in the ground state. The magnetic susceptibility data are modeled with the Heisenberg antiferromagnetic alternating spin chain, which gives K, K, alternation parameter () = , and a spin gap () of 12 K. The data were simulated using spin-dynamics based on the Landau–Lifshitz–Gilbert (LLG) method, showing excellent agreement with the experimental data. Magnetic heat capacity measurements further confirm the value of as 12 K. Field-induced magnetic behavior is also observed. First-principles electronic structure calculations were performed to complement the experimental findings and investigate the electronic structure and exchange interactions. The calculated from DFT + U matches closely with the experimental estimate, confirming the validity of the HAFM alternating spin chain model.
期刊介绍:
The Journal of Magnetism and Magnetic Materials provides an important forum for the disclosure and discussion of original contributions covering the whole spectrum of topics, from basic magnetism to the technology and applications of magnetic materials. The journal encourages greater interaction between the basic and applied sub-disciplines of magnetism with comprehensive review articles, in addition to full-length contributions. In addition, other categories of contributions are welcome, including Critical Focused issues, Current Perspectives and Outreach to the General Public.
Main Categories:
Full-length articles:
Technically original research documents that report results of value to the communities that comprise the journal audience. The link between chemical, structural and microstructural properties on the one hand and magnetic properties on the other hand are encouraged.
In addition to general topics covering all areas of magnetism and magnetic materials, the full-length articles also include three sub-sections, focusing on Nanomagnetism, Spintronics and Applications.
The sub-section on Nanomagnetism contains articles on magnetic nanoparticles, nanowires, thin films, 2D materials and other nanoscale magnetic materials and their applications.
The sub-section on Spintronics contains articles on magnetoresistance, magnetoimpedance, magneto-optical phenomena, Micro-Electro-Mechanical Systems (MEMS), and other topics related to spin current control and magneto-transport phenomena. The sub-section on Applications display papers that focus on applications of magnetic materials. The applications need to show a connection to magnetism.
Review articles:
Review articles organize, clarify, and summarize existing major works in the areas covered by the Journal and provide comprehensive citations to the full spectrum of relevant literature.