{"title":"非均质Stokes问题的局部正交分解方法","authors":"Moritz Hauck, Alexei Lozinski","doi":"10.1137/24m1704166","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 4, Page 1617-1641, August 2025. <br/> Abstract. In this paper, we propose a multiscale method for heterogeneous Stokes problems. The method is based on the localized orthogonal decomposition (LOD) methodology and has approximation properties independent of the regularity of the coefficients. We apply the LOD to an appropriate reformulation of the Stokes problem, which allows us to construct exponentially decaying basis functions for the velocity approximation while using a piecewise constant pressure approximation. The exponential decay motivates a localization of the basis computation, which is essential for the practical realization of the method. We perform a rigorous a priori error analysis and prove optimal convergence rates for the velocity approximation and a postprocessed pressure approximation, provided that the supports of the basis functions are logarithmically increased with the desired accuracy. Numerical experiments support the theoretical results of this paper.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"69 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Localized Orthogonal Decomposition Method for Heterogeneous Stokes Problems\",\"authors\":\"Moritz Hauck, Alexei Lozinski\",\"doi\":\"10.1137/24m1704166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 63, Issue 4, Page 1617-1641, August 2025. <br/> Abstract. In this paper, we propose a multiscale method for heterogeneous Stokes problems. The method is based on the localized orthogonal decomposition (LOD) methodology and has approximation properties independent of the regularity of the coefficients. We apply the LOD to an appropriate reformulation of the Stokes problem, which allows us to construct exponentially decaying basis functions for the velocity approximation while using a piecewise constant pressure approximation. The exponential decay motivates a localization of the basis computation, which is essential for the practical realization of the method. We perform a rigorous a priori error analysis and prove optimal convergence rates for the velocity approximation and a postprocessed pressure approximation, provided that the supports of the basis functions are logarithmically increased with the desired accuracy. Numerical experiments support the theoretical results of this paper.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/24m1704166\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1704166","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A Localized Orthogonal Decomposition Method for Heterogeneous Stokes Problems
SIAM Journal on Numerical Analysis, Volume 63, Issue 4, Page 1617-1641, August 2025. Abstract. In this paper, we propose a multiscale method for heterogeneous Stokes problems. The method is based on the localized orthogonal decomposition (LOD) methodology and has approximation properties independent of the regularity of the coefficients. We apply the LOD to an appropriate reformulation of the Stokes problem, which allows us to construct exponentially decaying basis functions for the velocity approximation while using a piecewise constant pressure approximation. The exponential decay motivates a localization of the basis computation, which is essential for the practical realization of the method. We perform a rigorous a priori error analysis and prove optimal convergence rates for the velocity approximation and a postprocessed pressure approximation, provided that the supports of the basis functions are logarithmically increased with the desired accuracy. Numerical experiments support the theoretical results of this paper.
期刊介绍:
SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.