CASP16中CoDock基团对药物和核酸靶标的配体结合预测。

IF 2.8 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ren Kong, Zunyun Jiang, Xufeng Lu, Liangxu Xie, Shan Chang
{"title":"CASP16中CoDock基团对药物和核酸靶标的配体结合预测。","authors":"Ren Kong, Zunyun Jiang, Xufeng Lu, Liangxu Xie, Shan Chang","doi":"10.1002/prot.70032","DOIUrl":null,"url":null,"abstract":"<p><p>Ligand binding prediction is a critical component of structure-based drug design, gaining prominence in Critical Assessment of protein Structure Prediction (CASP) since its introduction in CASP15. In CASP16, the challenges expanded to include protein-ligand and nucleic acid-ligand binding predictions, alongside binding affinity ranking, posing greater computational and methodological demands. This study presents a sophisticated prediction strategy combining template-based docking, multiple receptor conformations, and AI-driven scoring to address these challenges. For protein-ligand systems (L1000-L4000), we leveraged structural templates from PDB, ligand similarity analysis, and tools like CoDock-Ligand and AutoDock Vina to predict binding poses. Key successes included accurate predictions for targets like SARS-CoV-2 Mpro (L4000) and Autotaxin (L3000), though challenges persisted with binding site flexibility and pose ranking. The prediction of ligand pose achieved satisfactory results, with more than 66% of the distribution having RMSD less than 3 Å. Nucleic acid-ligand predictions (e.g., ZTP riboswitch) yielded mixed results, highlighting limitations in RNA/DNA structural accuracy. Affinity prediction employed diverse methods, with machine learning-based SVR_Conjoint outperforming physics-based approaches (Kendall's Tau = 0.43). Our strategy demonstrated robustness in CASP16, yet underscored the need for advancements in handling conformational dynamics and scoring accuracy. This work provides a framework for future ligand binding prediction efforts in computational drug discovery.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ligand Binding Prediction on Pharmaceutical and Nucleic Acid Targets by the CoDock Group in CASP16.\",\"authors\":\"Ren Kong, Zunyun Jiang, Xufeng Lu, Liangxu Xie, Shan Chang\",\"doi\":\"10.1002/prot.70032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ligand binding prediction is a critical component of structure-based drug design, gaining prominence in Critical Assessment of protein Structure Prediction (CASP) since its introduction in CASP15. In CASP16, the challenges expanded to include protein-ligand and nucleic acid-ligand binding predictions, alongside binding affinity ranking, posing greater computational and methodological demands. This study presents a sophisticated prediction strategy combining template-based docking, multiple receptor conformations, and AI-driven scoring to address these challenges. For protein-ligand systems (L1000-L4000), we leveraged structural templates from PDB, ligand similarity analysis, and tools like CoDock-Ligand and AutoDock Vina to predict binding poses. Key successes included accurate predictions for targets like SARS-CoV-2 Mpro (L4000) and Autotaxin (L3000), though challenges persisted with binding site flexibility and pose ranking. The prediction of ligand pose achieved satisfactory results, with more than 66% of the distribution having RMSD less than 3 Å. Nucleic acid-ligand predictions (e.g., ZTP riboswitch) yielded mixed results, highlighting limitations in RNA/DNA structural accuracy. Affinity prediction employed diverse methods, with machine learning-based SVR_Conjoint outperforming physics-based approaches (Kendall's Tau = 0.43). Our strategy demonstrated robustness in CASP16, yet underscored the need for advancements in handling conformational dynamics and scoring accuracy. This work provides a framework for future ligand binding prediction efforts in computational drug discovery.</p>\",\"PeriodicalId\":56271,\"journal\":{\"name\":\"Proteins-Structure Function and Bioinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteins-Structure Function and Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/prot.70032\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.70032","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

配体结合预测是基于结构的药物设计的关键组成部分,自CASP15引入以来,在蛋白质结构预测的关键评估(CASP)中获得了突出地位。在CASP16中,挑战扩大到包括蛋白质-配体和核酸-配体结合预测,以及结合亲和力排序,提出了更多的计算和方法要求。该研究提出了一种复杂的预测策略,结合了基于模板的对接、多种受体构象和人工智能驱动的评分来应对这些挑战。对于蛋白质-配体系统(L1000-L4000),我们利用PDB中的结构模板、配体相似性分析以及CoDock-Ligand和AutoDock Vina等工具来预测结合姿势。关键的成功包括准确预测SARS-CoV-2 Mpro (L4000)和Autotaxin (L3000)等靶标,尽管在结合位点灵活性和位姿排序方面仍然存在挑战。配体位姿的预测结果令人满意,超过66%的分布RMSD小于3 Å。核酸配体预测(例如,ZTP核糖开关)产生了不同的结果,突出了RNA/DNA结构准确性的局限性。亲和预测采用了多种方法,基于机器学习的svr_joint优于基于物理的方法(Kendall’s Tau = 0.43)。我们的策略证明了CASP16的稳健性,但强调了在处理构象动力学和评分准确性方面的进步。这项工作为未来计算药物发现中的配体结合预测工作提供了一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ligand Binding Prediction on Pharmaceutical and Nucleic Acid Targets by the CoDock Group in CASP16.

Ligand binding prediction is a critical component of structure-based drug design, gaining prominence in Critical Assessment of protein Structure Prediction (CASP) since its introduction in CASP15. In CASP16, the challenges expanded to include protein-ligand and nucleic acid-ligand binding predictions, alongside binding affinity ranking, posing greater computational and methodological demands. This study presents a sophisticated prediction strategy combining template-based docking, multiple receptor conformations, and AI-driven scoring to address these challenges. For protein-ligand systems (L1000-L4000), we leveraged structural templates from PDB, ligand similarity analysis, and tools like CoDock-Ligand and AutoDock Vina to predict binding poses. Key successes included accurate predictions for targets like SARS-CoV-2 Mpro (L4000) and Autotaxin (L3000), though challenges persisted with binding site flexibility and pose ranking. The prediction of ligand pose achieved satisfactory results, with more than 66% of the distribution having RMSD less than 3 Å. Nucleic acid-ligand predictions (e.g., ZTP riboswitch) yielded mixed results, highlighting limitations in RNA/DNA structural accuracy. Affinity prediction employed diverse methods, with machine learning-based SVR_Conjoint outperforming physics-based approaches (Kendall's Tau = 0.43). Our strategy demonstrated robustness in CASP16, yet underscored the need for advancements in handling conformational dynamics and scoring accuracy. This work provides a framework for future ligand binding prediction efforts in computational drug discovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proteins-Structure Function and Bioinformatics
Proteins-Structure Function and Bioinformatics 生物-生化与分子生物学
CiteScore
5.90
自引率
3.40%
发文量
172
审稿时长
3 months
期刊介绍: PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信