Phillip J Tomezsko, Jordan Wynn, Alla Ostrinskaya, Jessie Hendricks, Trina Vian
{"title":"用于生物标志物发现的多模态呼吸测量。","authors":"Phillip J Tomezsko, Jordan Wynn, Alla Ostrinskaya, Jessie Hendricks, Trina Vian","doi":"10.1088/1752-7163/adf6cd","DOIUrl":null,"url":null,"abstract":"<p><p>Breath contains numerous classes of compounds and biomolecules that could potentially be used as biomarkers for infectious disease as well as a range of other respiratory conditions or states. The goal of this work was to develop a testbed for simultaneous, multi-modal breath measurements. To validate the capabilities of this testbed, a pilot human-subjects research study was conducted to gather a wide range of correlated breath measurements. Seventeen healthy subjects provided breath samples at baseline respiratory rate for particle size, lipid composition and bacterial nucleic acid composition analysis. The majority of the particles the participants exhaled at baseline were smaller than 5<i>μ</i>m, consistent with previous literature. A deviation from baseline was detected in one participant immediately prior to COVID-19 symptom onset. This feature persisted for weeks after infection. The exhaled breath particulate contained lipids found in lung surfactant, indicating origin in the lung. Although bacterial DNA was not significantly higher in the exhaled breath particulate than in the environmental background, the metagenome of the breath was distinct from the environment, oral cavity and nasal passages of the participants. The low abundance of the breath microbiome limited analysis. No assertions of statistical significance are offered due to the limited nature of the study scope, the multi-modal breath testbed has promise for discovery of breath biomarkers and as a reference for biomarkers of different classes that are currently being used.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-modal breath measurements for biomarker discovery.\",\"authors\":\"Phillip J Tomezsko, Jordan Wynn, Alla Ostrinskaya, Jessie Hendricks, Trina Vian\",\"doi\":\"10.1088/1752-7163/adf6cd\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breath contains numerous classes of compounds and biomolecules that could potentially be used as biomarkers for infectious disease as well as a range of other respiratory conditions or states. The goal of this work was to develop a testbed for simultaneous, multi-modal breath measurements. To validate the capabilities of this testbed, a pilot human-subjects research study was conducted to gather a wide range of correlated breath measurements. Seventeen healthy subjects provided breath samples at baseline respiratory rate for particle size, lipid composition and bacterial nucleic acid composition analysis. The majority of the particles the participants exhaled at baseline were smaller than 5<i>μ</i>m, consistent with previous literature. A deviation from baseline was detected in one participant immediately prior to COVID-19 symptom onset. This feature persisted for weeks after infection. The exhaled breath particulate contained lipids found in lung surfactant, indicating origin in the lung. Although bacterial DNA was not significantly higher in the exhaled breath particulate than in the environmental background, the metagenome of the breath was distinct from the environment, oral cavity and nasal passages of the participants. The low abundance of the breath microbiome limited analysis. No assertions of statistical significance are offered due to the limited nature of the study scope, the multi-modal breath testbed has promise for discovery of breath biomarkers and as a reference for biomarkers of different classes that are currently being used.</p>\",\"PeriodicalId\":15306,\"journal\":{\"name\":\"Journal of breath research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of breath research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1088/1752-7163/adf6cd\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of breath research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1088/1752-7163/adf6cd","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Multi-modal breath measurements for biomarker discovery.
Breath contains numerous classes of compounds and biomolecules that could potentially be used as biomarkers for infectious disease as well as a range of other respiratory conditions or states. The goal of this work was to develop a testbed for simultaneous, multi-modal breath measurements. To validate the capabilities of this testbed, a pilot human-subjects research study was conducted to gather a wide range of correlated breath measurements. Seventeen healthy subjects provided breath samples at baseline respiratory rate for particle size, lipid composition and bacterial nucleic acid composition analysis. The majority of the particles the participants exhaled at baseline were smaller than 5μm, consistent with previous literature. A deviation from baseline was detected in one participant immediately prior to COVID-19 symptom onset. This feature persisted for weeks after infection. The exhaled breath particulate contained lipids found in lung surfactant, indicating origin in the lung. Although bacterial DNA was not significantly higher in the exhaled breath particulate than in the environmental background, the metagenome of the breath was distinct from the environment, oral cavity and nasal passages of the participants. The low abundance of the breath microbiome limited analysis. No assertions of statistical significance are offered due to the limited nature of the study scope, the multi-modal breath testbed has promise for discovery of breath biomarkers and as a reference for biomarkers of different classes that are currently being used.
期刊介绍:
Journal of Breath Research is dedicated to all aspects of scientific breath research. The traditional focus is on analysis of volatile compounds and aerosols in exhaled breath for the investigation of exogenous exposures, metabolism, toxicology, health status and the diagnosis of disease and breath odours. The journal also welcomes other breath-related topics.
Typical areas of interest include:
Big laboratory instrumentation: describing new state-of-the-art analytical instrumentation capable of performing high-resolution discovery and targeted breath research; exploiting complex technologies drawn from other areas of biochemistry and genetics for breath research.
Engineering solutions: developing new breath sampling technologies for condensate and aerosols, for chemical and optical sensors, for extraction and sample preparation methods, for automation and standardization, and for multiplex analyses to preserve the breath matrix and facilitating analytical throughput. Measure exhaled constituents (e.g. CO2, acetone, isoprene) as markers of human presence or mitigate such contaminants in enclosed environments.
Human and animal in vivo studies: decoding the ''breath exposome'', implementing exposure and intervention studies, performing cross-sectional and case-control research, assaying immune and inflammatory response, and testing mammalian host response to infections and exogenous exposures to develop information directly applicable to systems biology. Studying inhalation toxicology; inhaled breath as a source of internal dose; resultant blood, breath and urinary biomarkers linked to inhalation pathway.
Cellular and molecular level in vitro studies.
Clinical, pharmacological and forensic applications.
Mathematical, statistical and graphical data interpretation.