Sade W Clayton, Aimy Sebastian, Stephen P Wilson, Nicholas R Hum, Remy E Walk, Garrett W D Easson, Rachana Vaidya, Kaitlyn S Broz, Gabriela G Loots, Simon Y Tang
{"title":"单细胞RNA测序揭示了内源性和浸润性细胞类型在急性椎间盘损伤反应中细胞成熟度和功能的变化。","authors":"Sade W Clayton, Aimy Sebastian, Stephen P Wilson, Nicholas R Hum, Remy E Walk, Garrett W D Easson, Rachana Vaidya, Kaitlyn S Broz, Gabriela G Loots, Simon Y Tang","doi":"10.1016/j.yexcr.2025.114691","DOIUrl":null,"url":null,"abstract":"<p><p>Intervertebral disc (IVD) degeneration contributes to disabling back pain. Degeneration can be initiated by injury and progressively leads to an irreversible loss of cells and function. IVD function restoration through cell replacement therapies have had limited success due to knowledge gaps in the critical cell populations important for repair. Here, we used single cell RNA sequencing to identify the transcriptional changes of IVD resident and infiltrating cell populations from Control and Injured coccygeal IVDs extracted from 12-week-old female C57BL/6J mice 7 days post injury. Clustering, gene ontology, and pseudotime trajectory analyses determined transcriptomic divergences with injury, flow cytometry identified they types of infiltrating immune cells, and immunofluorescence was utilized to define mesenchymal stem cell (MSC) localization. We identified 11 distinct clusters that included IVD, immune, vascular cells, and MSCs. Differential gene expression analysis determined that Outer Annulus Fibrosus, Neutrophils, Saa2-High MSCs, Macrophages, and Krt18<sup>+</sup> Nucleus Pulposus (NP) cells were the major drivers of transcriptomic differences between Control and Injured cells. Gene ontology revealed that the most upregulated biological pathways were angiogenesis and T cell-related while wound healing and ECM regulation were downregulated. Pseudotime trajectory analyses revealed that IVD injury directed cells towards increased differentiation in all clusters, except for Krt18<sup>+</sup> NP cells which remained in a less mature cell state. Saa2-High and Grem1-High MSCs populations shifted towards more differentiated IVD cells profiles with injury and localized distinctly within the IVD. This study revealed novel MSC populations with the potential to be leveraged for future IVD repair studies.</p>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":" ","pages":"114691"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single cell RNA sequencing reveals shifts in cell maturity and function of endogenous and infiltrating cell types in response to acute intervertebral disc injury.\",\"authors\":\"Sade W Clayton, Aimy Sebastian, Stephen P Wilson, Nicholas R Hum, Remy E Walk, Garrett W D Easson, Rachana Vaidya, Kaitlyn S Broz, Gabriela G Loots, Simon Y Tang\",\"doi\":\"10.1016/j.yexcr.2025.114691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intervertebral disc (IVD) degeneration contributes to disabling back pain. Degeneration can be initiated by injury and progressively leads to an irreversible loss of cells and function. IVD function restoration through cell replacement therapies have had limited success due to knowledge gaps in the critical cell populations important for repair. Here, we used single cell RNA sequencing to identify the transcriptional changes of IVD resident and infiltrating cell populations from Control and Injured coccygeal IVDs extracted from 12-week-old female C57BL/6J mice 7 days post injury. Clustering, gene ontology, and pseudotime trajectory analyses determined transcriptomic divergences with injury, flow cytometry identified they types of infiltrating immune cells, and immunofluorescence was utilized to define mesenchymal stem cell (MSC) localization. We identified 11 distinct clusters that included IVD, immune, vascular cells, and MSCs. Differential gene expression analysis determined that Outer Annulus Fibrosus, Neutrophils, Saa2-High MSCs, Macrophages, and Krt18<sup>+</sup> Nucleus Pulposus (NP) cells were the major drivers of transcriptomic differences between Control and Injured cells. Gene ontology revealed that the most upregulated biological pathways were angiogenesis and T cell-related while wound healing and ECM regulation were downregulated. Pseudotime trajectory analyses revealed that IVD injury directed cells towards increased differentiation in all clusters, except for Krt18<sup>+</sup> NP cells which remained in a less mature cell state. Saa2-High and Grem1-High MSCs populations shifted towards more differentiated IVD cells profiles with injury and localized distinctly within the IVD. This study revealed novel MSC populations with the potential to be leveraged for future IVD repair studies.</p>\",\"PeriodicalId\":12227,\"journal\":{\"name\":\"Experimental cell research\",\"volume\":\" \",\"pages\":\"114691\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental cell research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.yexcr.2025.114691\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.yexcr.2025.114691","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Single cell RNA sequencing reveals shifts in cell maturity and function of endogenous and infiltrating cell types in response to acute intervertebral disc injury.
Intervertebral disc (IVD) degeneration contributes to disabling back pain. Degeneration can be initiated by injury and progressively leads to an irreversible loss of cells and function. IVD function restoration through cell replacement therapies have had limited success due to knowledge gaps in the critical cell populations important for repair. Here, we used single cell RNA sequencing to identify the transcriptional changes of IVD resident and infiltrating cell populations from Control and Injured coccygeal IVDs extracted from 12-week-old female C57BL/6J mice 7 days post injury. Clustering, gene ontology, and pseudotime trajectory analyses determined transcriptomic divergences with injury, flow cytometry identified they types of infiltrating immune cells, and immunofluorescence was utilized to define mesenchymal stem cell (MSC) localization. We identified 11 distinct clusters that included IVD, immune, vascular cells, and MSCs. Differential gene expression analysis determined that Outer Annulus Fibrosus, Neutrophils, Saa2-High MSCs, Macrophages, and Krt18+ Nucleus Pulposus (NP) cells were the major drivers of transcriptomic differences between Control and Injured cells. Gene ontology revealed that the most upregulated biological pathways were angiogenesis and T cell-related while wound healing and ECM regulation were downregulated. Pseudotime trajectory analyses revealed that IVD injury directed cells towards increased differentiation in all clusters, except for Krt18+ NP cells which remained in a less mature cell state. Saa2-High and Grem1-High MSCs populations shifted towards more differentiated IVD cells profiles with injury and localized distinctly within the IVD. This study revealed novel MSC populations with the potential to be leveraged for future IVD repair studies.
期刊介绍:
Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.