单细胞RNA测序揭示了内源性和浸润性细胞类型在急性椎间盘损伤反应中细胞成熟度和功能的变化。

IF 3.5 3区 生物学 Q3 CELL BIOLOGY
Experimental cell research Pub Date : 2025-08-01 Epub Date: 2025-07-30 DOI:10.1016/j.yexcr.2025.114691
Sade W Clayton, Aimy Sebastian, Stephen P Wilson, Nicholas R Hum, Remy E Walk, Garrett W D Easson, Rachana Vaidya, Kaitlyn S Broz, Gabriela G Loots, Simon Y Tang
{"title":"单细胞RNA测序揭示了内源性和浸润性细胞类型在急性椎间盘损伤反应中细胞成熟度和功能的变化。","authors":"Sade W Clayton, Aimy Sebastian, Stephen P Wilson, Nicholas R Hum, Remy E Walk, Garrett W D Easson, Rachana Vaidya, Kaitlyn S Broz, Gabriela G Loots, Simon Y Tang","doi":"10.1016/j.yexcr.2025.114691","DOIUrl":null,"url":null,"abstract":"<p><p>Intervertebral disc (IVD) degeneration contributes to disabling back pain. Degeneration can be initiated by injury and progressively leads to an irreversible loss of cells and function. IVD function restoration through cell replacement therapies have had limited success due to knowledge gaps in the critical cell populations important for repair. Here, we used single cell RNA sequencing to identify the transcriptional changes of IVD resident and infiltrating cell populations from Control and Injured coccygeal IVDs extracted from 12-week-old female C57BL/6J mice 7 days post injury. Clustering, gene ontology, and pseudotime trajectory analyses determined transcriptomic divergences with injury, flow cytometry identified they types of infiltrating immune cells, and immunofluorescence was utilized to define mesenchymal stem cell (MSC) localization. We identified 11 distinct clusters that included IVD, immune, vascular cells, and MSCs. Differential gene expression analysis determined that Outer Annulus Fibrosus, Neutrophils, Saa2-High MSCs, Macrophages, and Krt18<sup>+</sup> Nucleus Pulposus (NP) cells were the major drivers of transcriptomic differences between Control and Injured cells. Gene ontology revealed that the most upregulated biological pathways were angiogenesis and T cell-related while wound healing and ECM regulation were downregulated. Pseudotime trajectory analyses revealed that IVD injury directed cells towards increased differentiation in all clusters, except for Krt18<sup>+</sup> NP cells which remained in a less mature cell state. Saa2-High and Grem1-High MSCs populations shifted towards more differentiated IVD cells profiles with injury and localized distinctly within the IVD. This study revealed novel MSC populations with the potential to be leveraged for future IVD repair studies.</p>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":" ","pages":"114691"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single cell RNA sequencing reveals shifts in cell maturity and function of endogenous and infiltrating cell types in response to acute intervertebral disc injury.\",\"authors\":\"Sade W Clayton, Aimy Sebastian, Stephen P Wilson, Nicholas R Hum, Remy E Walk, Garrett W D Easson, Rachana Vaidya, Kaitlyn S Broz, Gabriela G Loots, Simon Y Tang\",\"doi\":\"10.1016/j.yexcr.2025.114691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intervertebral disc (IVD) degeneration contributes to disabling back pain. Degeneration can be initiated by injury and progressively leads to an irreversible loss of cells and function. IVD function restoration through cell replacement therapies have had limited success due to knowledge gaps in the critical cell populations important for repair. Here, we used single cell RNA sequencing to identify the transcriptional changes of IVD resident and infiltrating cell populations from Control and Injured coccygeal IVDs extracted from 12-week-old female C57BL/6J mice 7 days post injury. Clustering, gene ontology, and pseudotime trajectory analyses determined transcriptomic divergences with injury, flow cytometry identified they types of infiltrating immune cells, and immunofluorescence was utilized to define mesenchymal stem cell (MSC) localization. We identified 11 distinct clusters that included IVD, immune, vascular cells, and MSCs. Differential gene expression analysis determined that Outer Annulus Fibrosus, Neutrophils, Saa2-High MSCs, Macrophages, and Krt18<sup>+</sup> Nucleus Pulposus (NP) cells were the major drivers of transcriptomic differences between Control and Injured cells. Gene ontology revealed that the most upregulated biological pathways were angiogenesis and T cell-related while wound healing and ECM regulation were downregulated. Pseudotime trajectory analyses revealed that IVD injury directed cells towards increased differentiation in all clusters, except for Krt18<sup>+</sup> NP cells which remained in a less mature cell state. Saa2-High and Grem1-High MSCs populations shifted towards more differentiated IVD cells profiles with injury and localized distinctly within the IVD. This study revealed novel MSC populations with the potential to be leveraged for future IVD repair studies.</p>\",\"PeriodicalId\":12227,\"journal\":{\"name\":\"Experimental cell research\",\"volume\":\" \",\"pages\":\"114691\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental cell research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.yexcr.2025.114691\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.yexcr.2025.114691","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

椎间盘(IVD)退变会导致背部疼痛。退化可由损伤引起,并逐渐导致细胞和功能的不可逆转的丧失。由于对修复至关重要的关键细胞群的知识差距,通过细胞替代疗法恢复IVD功能的成功有限。在这里,我们使用单细胞RNA测序来鉴定损伤后7天从12周龄雌性C57BL/6J小鼠尾骨IVD中提取的对照和损伤的IVD驻留和浸润细胞群的转录变化。聚类、基因本体论和伪时间轨迹分析确定了损伤的转录组差异,流式细胞术确定了浸润免疫细胞的类型,免疫荧光用于确定间充质干细胞(MSC)的定位。我们确定了11个不同的集群,包括IVD、免疫细胞、血管细胞和MSCs。差异基因表达分析表明,纤维外环、中性粒细胞、Saa2-High MSCs、巨噬细胞和Krt18+髓核(NP)细胞是对照组和损伤细胞之间转录组差异的主要驱动因素。基因本体显示,血管生成和T细胞相关的生物通路上调最多,而伤口愈合和ECM调控下调最多。伪时间轨迹分析显示,除了Krt18+ NP细胞仍处于较不成熟的细胞状态外,IVD损伤导致所有细胞簇的细胞分化增加。Saa2-High和Grem1-High的MSCs群体随着损伤向更分化的IVD细胞谱转移,并且在IVD内明显定位。这项研究揭示了新的MSC群体有潜力用于未来的IVD修复研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single cell RNA sequencing reveals shifts in cell maturity and function of endogenous and infiltrating cell types in response to acute intervertebral disc injury.

Intervertebral disc (IVD) degeneration contributes to disabling back pain. Degeneration can be initiated by injury and progressively leads to an irreversible loss of cells and function. IVD function restoration through cell replacement therapies have had limited success due to knowledge gaps in the critical cell populations important for repair. Here, we used single cell RNA sequencing to identify the transcriptional changes of IVD resident and infiltrating cell populations from Control and Injured coccygeal IVDs extracted from 12-week-old female C57BL/6J mice 7 days post injury. Clustering, gene ontology, and pseudotime trajectory analyses determined transcriptomic divergences with injury, flow cytometry identified they types of infiltrating immune cells, and immunofluorescence was utilized to define mesenchymal stem cell (MSC) localization. We identified 11 distinct clusters that included IVD, immune, vascular cells, and MSCs. Differential gene expression analysis determined that Outer Annulus Fibrosus, Neutrophils, Saa2-High MSCs, Macrophages, and Krt18+ Nucleus Pulposus (NP) cells were the major drivers of transcriptomic differences between Control and Injured cells. Gene ontology revealed that the most upregulated biological pathways were angiogenesis and T cell-related while wound healing and ECM regulation were downregulated. Pseudotime trajectory analyses revealed that IVD injury directed cells towards increased differentiation in all clusters, except for Krt18+ NP cells which remained in a less mature cell state. Saa2-High and Grem1-High MSCs populations shifted towards more differentiated IVD cells profiles with injury and localized distinctly within the IVD. This study revealed novel MSC populations with the potential to be leveraged for future IVD repair studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental cell research
Experimental cell research 医学-细胞生物学
CiteScore
7.20
自引率
0.00%
发文量
295
审稿时长
30 days
期刊介绍: Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信