具有Soboleva激活函数的广义注意缺陷障碍模型的动态分析。

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-08-01 DOI:10.1063/5.0280557
L Moysis, M Lawnik, K F Kollias, M S Baptista, S Goudos, G Fragulis
{"title":"具有Soboleva激活函数的广义注意缺陷障碍模型的动态分析。","authors":"L Moysis, M Lawnik, K F Kollias, M S Baptista, S Goudos, G Fragulis","doi":"10.1063/5.0280557","DOIUrl":null,"url":null,"abstract":"<p><p>This work studies a modified chaotic neural network model consisting of two neurons for modeling attention deficit disorder. Considering an existing one-dimensional model from the literature, its two activation functions are replaced by the Soboleva hyperbolic tangent function. This change introduces four new control parameters to the system. The effect of these parameters on the system is extensively studied through a collection of phase, bifurcation, and Lyapunov exponent diagrams. Changing each of these parameters brings changes to the model's behavior, so the modified model is a significant generalization of the original one. Many phenomena are observed, including period doubling route to chaos, period halving route to period-1, crisis, antimonotonicity, coexisting attractors, and shrimps. The newly introduced degrees of freedom could provide a new direction toward modeling behavioral disorders using different activation functions.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 8","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic analysis of a generalized attention deficit disorder model with Soboleva activation functions.\",\"authors\":\"L Moysis, M Lawnik, K F Kollias, M S Baptista, S Goudos, G Fragulis\",\"doi\":\"10.1063/5.0280557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work studies a modified chaotic neural network model consisting of two neurons for modeling attention deficit disorder. Considering an existing one-dimensional model from the literature, its two activation functions are replaced by the Soboleva hyperbolic tangent function. This change introduces four new control parameters to the system. The effect of these parameters on the system is extensively studied through a collection of phase, bifurcation, and Lyapunov exponent diagrams. Changing each of these parameters brings changes to the model's behavior, so the modified model is a significant generalization of the original one. Many phenomena are observed, including period doubling route to chaos, period halving route to period-1, crisis, antimonotonicity, coexisting attractors, and shrimps. The newly introduced degrees of freedom could provide a new direction toward modeling behavioral disorders using different activation functions.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 8\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0280557\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0280557","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种改进的由两个神经元组成的混沌神经网络模型,用于模拟注意缺陷障碍。考虑文献中已有的一维模型,将其两个激活函数替换为Soboleva双曲正切函数。这一变化为系统引入了四个新的控制参数。这些参数对系统的影响通过相,分岔和李亚普诺夫指数图的集合进行了广泛的研究。改变这些参数中的每一个都会改变模型的行为,因此修改后的模型是原始模型的重要泛化。许多现象被观察到,包括周期加倍路径到混沌,周期减半路径到周期1,危机,反单调性,共存吸引子和虾。新引入的自由度可以为使用不同激活函数建模行为障碍提供新的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic analysis of a generalized attention deficit disorder model with Soboleva activation functions.

This work studies a modified chaotic neural network model consisting of two neurons for modeling attention deficit disorder. Considering an existing one-dimensional model from the literature, its two activation functions are replaced by the Soboleva hyperbolic tangent function. This change introduces four new control parameters to the system. The effect of these parameters on the system is extensively studied through a collection of phase, bifurcation, and Lyapunov exponent diagrams. Changing each of these parameters brings changes to the model's behavior, so the modified model is a significant generalization of the original one. Many phenomena are observed, including period doubling route to chaos, period halving route to period-1, crisis, antimonotonicity, coexisting attractors, and shrimps. The newly introduced degrees of freedom could provide a new direction toward modeling behavioral disorders using different activation functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信