Ioannis Tsamesidis, Athanasios Christodoulou, Evangelia Stalika, Georgia K Pouroutzidou, Eleana Kontonasaki
{"title":"牙种植体整合创新:利用干细胞和涂层优化牙种植体性能。","authors":"Ioannis Tsamesidis, Athanasios Christodoulou, Evangelia Stalika, Georgia K Pouroutzidou, Eleana Kontonasaki","doi":"10.1002/btpr.70060","DOIUrl":null,"url":null,"abstract":"<p><p>The last two decades, between 2000 and 2024, significant steps were achieved regarding the interaction between various stem cells and titanium implant surfaces to improve dental implant integration. This literature review focuses on the potential effects of (i) bone marrow mesenchymal stem cells (BMSCs), (ii) periodontal ligament stem cells (PDLSCs), and (iii) dental follicle stem cells (DFSCs) in promoting osseointegration and tissue regeneration. Studies have shown that combining these stem cells with Ti implants enhances bone formation, accelerates implant osseointegration, and improves long-term implant stability. Additionally, animal models and bioreactors have been employed to evaluate the effects of stem cells on dental implant performance, with some studies showing promising results, although certain models have also yielded inconsistent outcomes. The interaction between stem cells and surface-modified Ti implants has emerged as a key area of research, with results indicating improved healing times and reduced failure rates. This article provides an overview of these findings, highlighting the role of stem cells in not only replacing lost teeth but also actively regenerating the surrounding biological structures for a more integrated and natural outcome.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e70060"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovations in Dental Implants Integration: Optimizing dental implants performance utilizing stem cells and coatings.\",\"authors\":\"Ioannis Tsamesidis, Athanasios Christodoulou, Evangelia Stalika, Georgia K Pouroutzidou, Eleana Kontonasaki\",\"doi\":\"10.1002/btpr.70060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The last two decades, between 2000 and 2024, significant steps were achieved regarding the interaction between various stem cells and titanium implant surfaces to improve dental implant integration. This literature review focuses on the potential effects of (i) bone marrow mesenchymal stem cells (BMSCs), (ii) periodontal ligament stem cells (PDLSCs), and (iii) dental follicle stem cells (DFSCs) in promoting osseointegration and tissue regeneration. Studies have shown that combining these stem cells with Ti implants enhances bone formation, accelerates implant osseointegration, and improves long-term implant stability. Additionally, animal models and bioreactors have been employed to evaluate the effects of stem cells on dental implant performance, with some studies showing promising results, although certain models have also yielded inconsistent outcomes. The interaction between stem cells and surface-modified Ti implants has emerged as a key area of research, with results indicating improved healing times and reduced failure rates. This article provides an overview of these findings, highlighting the role of stem cells in not only replacing lost teeth but also actively regenerating the surrounding biological structures for a more integrated and natural outcome.</p>\",\"PeriodicalId\":8856,\"journal\":{\"name\":\"Biotechnology Progress\",\"volume\":\" \",\"pages\":\"e70060\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/btpr.70060\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btpr.70060","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Innovations in Dental Implants Integration: Optimizing dental implants performance utilizing stem cells and coatings.
The last two decades, between 2000 and 2024, significant steps were achieved regarding the interaction between various stem cells and titanium implant surfaces to improve dental implant integration. This literature review focuses on the potential effects of (i) bone marrow mesenchymal stem cells (BMSCs), (ii) periodontal ligament stem cells (PDLSCs), and (iii) dental follicle stem cells (DFSCs) in promoting osseointegration and tissue regeneration. Studies have shown that combining these stem cells with Ti implants enhances bone formation, accelerates implant osseointegration, and improves long-term implant stability. Additionally, animal models and bioreactors have been employed to evaluate the effects of stem cells on dental implant performance, with some studies showing promising results, although certain models have also yielded inconsistent outcomes. The interaction between stem cells and surface-modified Ti implants has emerged as a key area of research, with results indicating improved healing times and reduced failure rates. This article provides an overview of these findings, highlighting the role of stem cells in not only replacing lost teeth but also actively regenerating the surrounding biological structures for a more integrated and natural outcome.
期刊介绍:
Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries.
Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.