Liye Mei , Chentao Lian , Suyang Han , Zhaoyi Ye , Yuyang Hua , Meixing Sun , Jing He , Zhiwei Ye , Mengqing Mei , Yaxiaer Yalikun , Hui Shen , Cheng Lei , Bei Xiong
{"title":"用于骨髓显微图像中淋巴细胞白血病检测的高效空间引导学习网络","authors":"Liye Mei , Chentao Lian , Suyang Han , Zhaoyi Ye , Yuyang Hua , Meixing Sun , Jing He , Zhiwei Ye , Mengqing Mei , Yaxiaer Yalikun , Hui Shen , Cheng Lei , Bei Xiong","doi":"10.1016/j.compbiomed.2025.110860","DOIUrl":null,"url":null,"abstract":"<div><div>Leukemia is a hematologic tumor that proliferates in bone marrow and seriously affects the survival of patients. Early and accurate diagnosis is crucial for effective leukemia treatment. Traditional diagnostic methods rely on experts’ subjective analysis of bone marrow smears microscopic images. This approach is time-consuming and complex. Despite recent advances in deep learning, automated leukemia detection remains limited due to the scarcity of high-quality datasets, the prevailing focus on single-cell image classification rather than precise cell-level detection in whole slide images, along with challenges such as morphological heterogeneity, uneven staining, scale variation, and occluded cell boundary in bone marrow smears. To address these challenges, we construct a novel dataset comprising 1794 high-quality microscopic images, establishing a new benchmark for lymphocytic leukemia detection. Additionally, we develop a fully automated diagnostic method based on spatially-guided learning (SGLNet), enabling rapid whole slide analysis of leukemia. Specifically, we introduce several innovative enhancements to the baseline algorithm, including the spatially-guided learning framework, scale-aware fusion module, small object-enhancing mechanisms, and efficient intersection over union loss function. These improvements effectively address the impact of morphological similarity and complex backgrounds in leukemia detection, significantly enhancing detection accuracy. Finally, the results show that SGLNet achieves mean average precision scores of 95.9 % and 98.6 % in detecting acute lymphoblastic leukemia and chronic lymphocytic leukemia, respectively. These results demonstrate the efficiency and accuracy of our method in identifying lymphoblastic leukemia cells, significantly enhancing large-scale clinical diagnosis, and supporting clinicians in developing personalized treatment plans.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"196 ","pages":"Article 110860"},"PeriodicalIF":6.3000,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-efficiency spatially guided learning network for lymphoblastic leukemia detection in bone marrow microscopy images\",\"authors\":\"Liye Mei , Chentao Lian , Suyang Han , Zhaoyi Ye , Yuyang Hua , Meixing Sun , Jing He , Zhiwei Ye , Mengqing Mei , Yaxiaer Yalikun , Hui Shen , Cheng Lei , Bei Xiong\",\"doi\":\"10.1016/j.compbiomed.2025.110860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Leukemia is a hematologic tumor that proliferates in bone marrow and seriously affects the survival of patients. Early and accurate diagnosis is crucial for effective leukemia treatment. Traditional diagnostic methods rely on experts’ subjective analysis of bone marrow smears microscopic images. This approach is time-consuming and complex. Despite recent advances in deep learning, automated leukemia detection remains limited due to the scarcity of high-quality datasets, the prevailing focus on single-cell image classification rather than precise cell-level detection in whole slide images, along with challenges such as morphological heterogeneity, uneven staining, scale variation, and occluded cell boundary in bone marrow smears. To address these challenges, we construct a novel dataset comprising 1794 high-quality microscopic images, establishing a new benchmark for lymphocytic leukemia detection. Additionally, we develop a fully automated diagnostic method based on spatially-guided learning (SGLNet), enabling rapid whole slide analysis of leukemia. Specifically, we introduce several innovative enhancements to the baseline algorithm, including the spatially-guided learning framework, scale-aware fusion module, small object-enhancing mechanisms, and efficient intersection over union loss function. These improvements effectively address the impact of morphological similarity and complex backgrounds in leukemia detection, significantly enhancing detection accuracy. Finally, the results show that SGLNet achieves mean average precision scores of 95.9 % and 98.6 % in detecting acute lymphoblastic leukemia and chronic lymphocytic leukemia, respectively. These results demonstrate the efficiency and accuracy of our method in identifying lymphoblastic leukemia cells, significantly enhancing large-scale clinical diagnosis, and supporting clinicians in developing personalized treatment plans.</div></div>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"196 \",\"pages\":\"Article 110860\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010482525012119\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525012119","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
High-efficiency spatially guided learning network for lymphoblastic leukemia detection in bone marrow microscopy images
Leukemia is a hematologic tumor that proliferates in bone marrow and seriously affects the survival of patients. Early and accurate diagnosis is crucial for effective leukemia treatment. Traditional diagnostic methods rely on experts’ subjective analysis of bone marrow smears microscopic images. This approach is time-consuming and complex. Despite recent advances in deep learning, automated leukemia detection remains limited due to the scarcity of high-quality datasets, the prevailing focus on single-cell image classification rather than precise cell-level detection in whole slide images, along with challenges such as morphological heterogeneity, uneven staining, scale variation, and occluded cell boundary in bone marrow smears. To address these challenges, we construct a novel dataset comprising 1794 high-quality microscopic images, establishing a new benchmark for lymphocytic leukemia detection. Additionally, we develop a fully automated diagnostic method based on spatially-guided learning (SGLNet), enabling rapid whole slide analysis of leukemia. Specifically, we introduce several innovative enhancements to the baseline algorithm, including the spatially-guided learning framework, scale-aware fusion module, small object-enhancing mechanisms, and efficient intersection over union loss function. These improvements effectively address the impact of morphological similarity and complex backgrounds in leukemia detection, significantly enhancing detection accuracy. Finally, the results show that SGLNet achieves mean average precision scores of 95.9 % and 98.6 % in detecting acute lymphoblastic leukemia and chronic lymphocytic leukemia, respectively. These results demonstrate the efficiency and accuracy of our method in identifying lymphoblastic leukemia cells, significantly enhancing large-scale clinical diagnosis, and supporting clinicians in developing personalized treatment plans.
期刊介绍:
Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.