具有Sb2(S1‐x,Sex)空穴传输层的CZTSSe太阳能电池的模拟

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Jin Wang, Tianyu Lu, Hongtao Li, Xiaodong Feng
{"title":"具有Sb2(S1‐x,Sex)空穴传输层的CZTSSe太阳能电池的模拟","authors":"Jin Wang, Tianyu Lu, Hongtao Li, Xiaodong Feng","doi":"10.1002/adts.202500956","DOIUrl":null,"url":null,"abstract":"In this study, Cu<jats:sub>2</jats:sub>ZnSn(S,Se)<jats:sub>4</jats:sub> (CZTSSe) solar cell with a hole transport layer (HTL) of Sb<jats:sub>2</jats:sub>(S<jats:sub>1‐x</jats:sub>,Se<jats:sub>x</jats:sub>)<jats:sub>3</jats:sub> is simulated by Solar Cell Capacitance Simulator (SCAPS). First, the effect of the Sb<jats:sub>2</jats:sub>(S<jats:sub>1‐x</jats:sub>,Se<jats:sub>x</jats:sub>)<jats:sub>3</jats:sub> bandgap (E<jats:sub>g</jats:sub>) on device performance is analyzed. When E<jats:sub>g</jats:sub> is 1.5 eV, the valence band offset (VBO) between CZTSSe and Sb<jats:sub>2</jats:sub>(S<jats:sub>1‐x</jats:sub>,Se<jats:sub>x</jats:sub>)<jats:sub>3</jats:sub> is −0.003 eV, forming a nearly flat‐band structure that is favorable for hole transport. Subsequently, several key parameters of the device are optimized. The optimal thickness of the absorber layer is 3.5 µm, and the defect density needs to be controlled below 10<jats:sup>13</jats:sup> cm<jats:sup>−3</jats:sup>. The optimum thickness of the Sb<jats:sub>2</jats:sub>(S<jats:sub>1‐x</jats:sub>,Se<jats:sub>x</jats:sub>)<jats:sub>3</jats:sub> layer is 20 nm, and the ideal doping density is 10<jats:sup>17</jats:sup> cm<jats:sup>−3</jats:sup>. The defect densities at the CZTSSe/Sb<jats:sub>2</jats:sub>(S<jats:sub>1‐x</jats:sub>,Se<jats:sub>x</jats:sub>)<jats:sub>3</jats:sub> and CZTSSe/CdS interfaces should be controlled at 10<jats:sup>14</jats:sup> and 10<jats:sup>13</jats:sup> cm<jats:sup>−2</jats:sup> or less, respectively. The work function of the back‐electrode should be no less than 5.1 eV. Finally, CZTSSe solar cell can achieve the best efficiency of 22.07%. The simulation results demonstrate the potential to provide a new device structure for fabricating high performance CZTSSe devices.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"11 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of CZTSSe Solar Cells with a Hole Transport Layer of Sb2(S1‐x,Sex)3\",\"authors\":\"Jin Wang, Tianyu Lu, Hongtao Li, Xiaodong Feng\",\"doi\":\"10.1002/adts.202500956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, Cu<jats:sub>2</jats:sub>ZnSn(S,Se)<jats:sub>4</jats:sub> (CZTSSe) solar cell with a hole transport layer (HTL) of Sb<jats:sub>2</jats:sub>(S<jats:sub>1‐x</jats:sub>,Se<jats:sub>x</jats:sub>)<jats:sub>3</jats:sub> is simulated by Solar Cell Capacitance Simulator (SCAPS). First, the effect of the Sb<jats:sub>2</jats:sub>(S<jats:sub>1‐x</jats:sub>,Se<jats:sub>x</jats:sub>)<jats:sub>3</jats:sub> bandgap (E<jats:sub>g</jats:sub>) on device performance is analyzed. When E<jats:sub>g</jats:sub> is 1.5 eV, the valence band offset (VBO) between CZTSSe and Sb<jats:sub>2</jats:sub>(S<jats:sub>1‐x</jats:sub>,Se<jats:sub>x</jats:sub>)<jats:sub>3</jats:sub> is −0.003 eV, forming a nearly flat‐band structure that is favorable for hole transport. Subsequently, several key parameters of the device are optimized. The optimal thickness of the absorber layer is 3.5 µm, and the defect density needs to be controlled below 10<jats:sup>13</jats:sup> cm<jats:sup>−3</jats:sup>. The optimum thickness of the Sb<jats:sub>2</jats:sub>(S<jats:sub>1‐x</jats:sub>,Se<jats:sub>x</jats:sub>)<jats:sub>3</jats:sub> layer is 20 nm, and the ideal doping density is 10<jats:sup>17</jats:sup> cm<jats:sup>−3</jats:sup>. The defect densities at the CZTSSe/Sb<jats:sub>2</jats:sub>(S<jats:sub>1‐x</jats:sub>,Se<jats:sub>x</jats:sub>)<jats:sub>3</jats:sub> and CZTSSe/CdS interfaces should be controlled at 10<jats:sup>14</jats:sup> and 10<jats:sup>13</jats:sup> cm<jats:sup>−2</jats:sup> or less, respectively. The work function of the back‐electrode should be no less than 5.1 eV. Finally, CZTSSe solar cell can achieve the best efficiency of 22.07%. The simulation results demonstrate the potential to provide a new device structure for fabricating high performance CZTSSe devices.\",\"PeriodicalId\":7219,\"journal\":{\"name\":\"Advanced Theory and Simulations\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adts.202500956\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202500956","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用太阳能电池电容模拟器(SCAPS)对具有Sb2(S1‐x,Sex)3空穴传输层(HTL)的Cu2ZnSn(S,Se)4 (CZTSSe)太阳能电池进行了模拟。首先,分析了Sb2(S1‐x,Sex)3带隙(Eg)对器件性能的影响。当Eg为1.5 eV时,CZTSSe与Sb2(S1‐x,Sex)3之间的价带偏移(VBO)为- 0.003 eV,形成了有利于空穴输运的近平带结构。随后,对器件的几个关键参数进行了优化。吸收层的最佳厚度为3.5µm,缺陷密度需控制在1013 cm−3以下。Sb2(S1‐x,Sex)3层的最佳厚度为20 nm,理想掺杂密度为1017 cm−3。在CZTSSe/Sb2(S1‐x,Sex)3和CZTSSe/CdS界面处的缺陷密度应分别控制在1014和1013 cm−2以下。后电极的功函数应不小于5.1 eV。最后,CZTSSe太阳能电池的最佳效率为22.07%。仿真结果表明,该方法为制造高性能CZTSSe器件提供了一种新的器件结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation of CZTSSe Solar Cells with a Hole Transport Layer of Sb2(S1‐x,Sex)3
In this study, Cu2ZnSn(S,Se)4 (CZTSSe) solar cell with a hole transport layer (HTL) of Sb2(S1‐x,Sex)3 is simulated by Solar Cell Capacitance Simulator (SCAPS). First, the effect of the Sb2(S1‐x,Sex)3 bandgap (Eg) on device performance is analyzed. When Eg is 1.5 eV, the valence band offset (VBO) between CZTSSe and Sb2(S1‐x,Sex)3 is −0.003 eV, forming a nearly flat‐band structure that is favorable for hole transport. Subsequently, several key parameters of the device are optimized. The optimal thickness of the absorber layer is 3.5 µm, and the defect density needs to be controlled below 1013 cm−3. The optimum thickness of the Sb2(S1‐x,Sex)3 layer is 20 nm, and the ideal doping density is 1017 cm−3. The defect densities at the CZTSSe/Sb2(S1‐x,Sex)3 and CZTSSe/CdS interfaces should be controlled at 1014 and 1013 cm−2 or less, respectively. The work function of the back‐electrode should be no less than 5.1 eV. Finally, CZTSSe solar cell can achieve the best efficiency of 22.07%. The simulation results demonstrate the potential to provide a new device structure for fabricating high performance CZTSSe devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信