多面体上wachpress坐标的高阶导数的上界

IF 2.4 2区 数学 Q1 MATHEMATICS, APPLIED
Pengjie Tian, Yanqiu Wang
{"title":"多面体上wachpress坐标的高阶导数的上界","authors":"Pengjie Tian, Yanqiu Wang","doi":"10.1093/imanum/draf063","DOIUrl":null,"url":null,"abstract":"The gradient bounds of generalized barycentric coordinates (GBCs) play an essential role in the $H^{1}$ norm error estimate of generalized barycentric interpolations (Gillette, Rand & Bajaj (2012) Error estimates for generalized barycentric interpolation. Adv. Comput. Math., 37, 417–439.). Similarly, an $H^{k}$ norm error estimate, $k>1$, requires upper bounds of higher-order derivatives. Due to the nonpolynomial nature of GBCs, existing techniques for proving the gradient bounds do not easily extend to higher-order cases. In this paper, we propose a new method for deriving upper bounds of higher-order derivatives for the Wachspress GBCs on simple convex $d$-dimensional polytopes, $d\\ge 1$. The result can be used to prove optimal convergence for Wachspress-based polytopal finite element approximation of fourth- or higher-order elliptic equations. Another contribution of this paper is to compare various shape-regularity conditions for simple convex polytopes, and to clarify their relations using knowledge from convex geometry.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"723 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upper bounds of higher-order derivatives for Wachspress coordinates on polytopes\",\"authors\":\"Pengjie Tian, Yanqiu Wang\",\"doi\":\"10.1093/imanum/draf063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The gradient bounds of generalized barycentric coordinates (GBCs) play an essential role in the $H^{1}$ norm error estimate of generalized barycentric interpolations (Gillette, Rand & Bajaj (2012) Error estimates for generalized barycentric interpolation. Adv. Comput. Math., 37, 417–439.). Similarly, an $H^{k}$ norm error estimate, $k>1$, requires upper bounds of higher-order derivatives. Due to the nonpolynomial nature of GBCs, existing techniques for proving the gradient bounds do not easily extend to higher-order cases. In this paper, we propose a new method for deriving upper bounds of higher-order derivatives for the Wachspress GBCs on simple convex $d$-dimensional polytopes, $d\\\\ge 1$. The result can be used to prove optimal convergence for Wachspress-based polytopal finite element approximation of fourth- or higher-order elliptic equations. Another contribution of this paper is to compare various shape-regularity conditions for simple convex polytopes, and to clarify their relations using knowledge from convex geometry.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"723 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/draf063\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf063","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

广义重心坐标的梯度界在广义重心插值的H^{1}$范数误差估计中起着至关重要的作用。Bajaj(2012)广义重心插值的误差估计。放置第一版。数学。, 37, 417-439 .)。类似地,$H^{k}$范数误差估计$k>1$需要高阶导数的上界。由于gbc的非多项式性质,现有的证明梯度界的技术不容易推广到高阶情况。在本文中,我们提出了一种求简单凸$d$维多面体上wachpress gbc的高阶导数上界的新方法。该结果可用于证明基于wachpress的四阶或高阶椭圆方程的多边形有限元逼近的最优收敛性。本文的另一个贡献是比较了简单凸多面体的各种形状规则性条件,并利用凸几何知识澄清了它们之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Upper bounds of higher-order derivatives for Wachspress coordinates on polytopes
The gradient bounds of generalized barycentric coordinates (GBCs) play an essential role in the $H^{1}$ norm error estimate of generalized barycentric interpolations (Gillette, Rand & Bajaj (2012) Error estimates for generalized barycentric interpolation. Adv. Comput. Math., 37, 417–439.). Similarly, an $H^{k}$ norm error estimate, $k>1$, requires upper bounds of higher-order derivatives. Due to the nonpolynomial nature of GBCs, existing techniques for proving the gradient bounds do not easily extend to higher-order cases. In this paper, we propose a new method for deriving upper bounds of higher-order derivatives for the Wachspress GBCs on simple convex $d$-dimensional polytopes, $d\ge 1$. The result can be used to prove optimal convergence for Wachspress-based polytopal finite element approximation of fourth- or higher-order elliptic equations. Another contribution of this paper is to compare various shape-regularity conditions for simple convex polytopes, and to clarify their relations using knowledge from convex geometry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信