{"title":"人工智能诊断膀胱病理生理:最新综述及未来展望。","authors":"Chitaranjan Mahapatra","doi":"10.14440/bladder.2024.0054","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Bladder pathophysiology encompasses a wide array of disorders, including bladder cancer, interstitial cystitis, overactive and underactive bladder, and bladder outlet obstruction. It also involves conditions such as neurogenic bladder, bladder infections, trauma, and congenital anomalies. Each of these conditions presents unique challenges for diagnosis and treatment. Recent advancements in artificial intelligence (AI) have shown significant potential in revolutionizing diagnostic methodologies within this domain.</p><p><strong>Objective: </strong>This review provides an updated and comprehensive examination of the integration of AI into the diagnosis of bladder pathophysiology. It highlights key AI techniques, including machine learning and deep learning, and their applications in identifying and classifying bladder conditions. The review also assesses current AI-driven diagnostic tools, their accuracy, and clinical utility. Furthermore, it explores the challenges and limitations confronted in the implementation of AI technologies, such as data quality, interpretability, and integration into clinical workflows, among others. Finally, the paper discusses future directions and advancements, proposing pathways for enhancing AI applications in bladder pathophysiology diagnosis. This review aims to provide a valuable resource for clinicians, researchers, and technologists, fostering an in-depth understanding of AI's roles and potential in transforming bladder disease diagnosis.</p><p><strong>Conclusion: </strong>While AI demonstrates considerable promise in enhancing the diagnosis of bladder pathophysiology, ongoing progresses in data quality, algorithm interpretability, and clinical integration are essential for maximizing its potential. The future of AI in bladder disease diagnosis holds great promise, with continued innovation and collaboration opening the possibility of more accurate, efficient, and personalized care for patients.</p>","PeriodicalId":72421,"journal":{"name":"Bladder (San Francisco, Calif.)","volume":"12 2","pages":"e21200042"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12308116/pdf/","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence for diagnosing bladder pathophysiology: An updated review and future prospects.\",\"authors\":\"Chitaranjan Mahapatra\",\"doi\":\"10.14440/bladder.2024.0054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Bladder pathophysiology encompasses a wide array of disorders, including bladder cancer, interstitial cystitis, overactive and underactive bladder, and bladder outlet obstruction. It also involves conditions such as neurogenic bladder, bladder infections, trauma, and congenital anomalies. Each of these conditions presents unique challenges for diagnosis and treatment. Recent advancements in artificial intelligence (AI) have shown significant potential in revolutionizing diagnostic methodologies within this domain.</p><p><strong>Objective: </strong>This review provides an updated and comprehensive examination of the integration of AI into the diagnosis of bladder pathophysiology. It highlights key AI techniques, including machine learning and deep learning, and their applications in identifying and classifying bladder conditions. The review also assesses current AI-driven diagnostic tools, their accuracy, and clinical utility. Furthermore, it explores the challenges and limitations confronted in the implementation of AI technologies, such as data quality, interpretability, and integration into clinical workflows, among others. Finally, the paper discusses future directions and advancements, proposing pathways for enhancing AI applications in bladder pathophysiology diagnosis. This review aims to provide a valuable resource for clinicians, researchers, and technologists, fostering an in-depth understanding of AI's roles and potential in transforming bladder disease diagnosis.</p><p><strong>Conclusion: </strong>While AI demonstrates considerable promise in enhancing the diagnosis of bladder pathophysiology, ongoing progresses in data quality, algorithm interpretability, and clinical integration are essential for maximizing its potential. The future of AI in bladder disease diagnosis holds great promise, with continued innovation and collaboration opening the possibility of more accurate, efficient, and personalized care for patients.</p>\",\"PeriodicalId\":72421,\"journal\":{\"name\":\"Bladder (San Francisco, Calif.)\",\"volume\":\"12 2\",\"pages\":\"e21200042\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12308116/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bladder (San Francisco, Calif.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14440/bladder.2024.0054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bladder (San Francisco, Calif.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14440/bladder.2024.0054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Artificial intelligence for diagnosing bladder pathophysiology: An updated review and future prospects.
Background: Bladder pathophysiology encompasses a wide array of disorders, including bladder cancer, interstitial cystitis, overactive and underactive bladder, and bladder outlet obstruction. It also involves conditions such as neurogenic bladder, bladder infections, trauma, and congenital anomalies. Each of these conditions presents unique challenges for diagnosis and treatment. Recent advancements in artificial intelligence (AI) have shown significant potential in revolutionizing diagnostic methodologies within this domain.
Objective: This review provides an updated and comprehensive examination of the integration of AI into the diagnosis of bladder pathophysiology. It highlights key AI techniques, including machine learning and deep learning, and their applications in identifying and classifying bladder conditions. The review also assesses current AI-driven diagnostic tools, their accuracy, and clinical utility. Furthermore, it explores the challenges and limitations confronted in the implementation of AI technologies, such as data quality, interpretability, and integration into clinical workflows, among others. Finally, the paper discusses future directions and advancements, proposing pathways for enhancing AI applications in bladder pathophysiology diagnosis. This review aims to provide a valuable resource for clinicians, researchers, and technologists, fostering an in-depth understanding of AI's roles and potential in transforming bladder disease diagnosis.
Conclusion: While AI demonstrates considerable promise in enhancing the diagnosis of bladder pathophysiology, ongoing progresses in data quality, algorithm interpretability, and clinical integration are essential for maximizing its potential. The future of AI in bladder disease diagnosis holds great promise, with continued innovation and collaboration opening the possibility of more accurate, efficient, and personalized care for patients.