将宿主内免疫动力学与宿主间传播和再感染风险联系起来。

IF 2 4区 数学 Q2 BIOLOGY
Journal of Theoretical Biology Pub Date : 2025-10-07 Epub Date: 2025-07-29 DOI:10.1016/j.jtbi.2025.112210
Rodolfo Blanco-Rodriguez, Alejandro Anderson, Esteban Hernandez-Vargas
{"title":"将宿主内免疫动力学与宿主间传播和再感染风险联系起来。","authors":"Rodolfo Blanco-Rodriguez, Alejandro Anderson, Esteban Hernandez-Vargas","doi":"10.1016/j.jtbi.2025.112210","DOIUrl":null,"url":null,"abstract":"<p><p>The link between the virus and antibody dynamics of an infected host to the transmission of the virus to a susceptible population remains a central problem in science as it involves several complex and dynamic processes at different scales. In this study, we integrate deterministic and stochastic within-host models to explore multiscale transmission dynamics. Our methodology accounts for encounter frequency, within-host variability, and reinfection dynamics to assess their impact on epidemic progression. Our results show that within-host stochasticity disrupts synchronized viral peaks, leading to a more uniform transmission pattern and reducing the effectiveness of interventions targeting peak viral load. Considering the half-life of antibodies is 25 days, cycles of reinfections cannot be maintained in small populations, but reinfections become self-sustaining when a circular network exceeds 21 nodes, allowing indefinite circulation. These findings emphasize the need for integrating within-host dynamics in epidemic research.</p>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":" ","pages":"112210"},"PeriodicalIF":2.0000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12456430/pdf/","citationCount":"0","resultStr":"{\"title\":\"Linking within-host immune dynamics to between-host transmission and reinfection risk.\",\"authors\":\"Rodolfo Blanco-Rodriguez, Alejandro Anderson, Esteban Hernandez-Vargas\",\"doi\":\"10.1016/j.jtbi.2025.112210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The link between the virus and antibody dynamics of an infected host to the transmission of the virus to a susceptible population remains a central problem in science as it involves several complex and dynamic processes at different scales. In this study, we integrate deterministic and stochastic within-host models to explore multiscale transmission dynamics. Our methodology accounts for encounter frequency, within-host variability, and reinfection dynamics to assess their impact on epidemic progression. Our results show that within-host stochasticity disrupts synchronized viral peaks, leading to a more uniform transmission pattern and reducing the effectiveness of interventions targeting peak viral load. Considering the half-life of antibodies is 25 days, cycles of reinfections cannot be maintained in small populations, but reinfections become self-sustaining when a circular network exceeds 21 nodes, allowing indefinite circulation. These findings emphasize the need for integrating within-host dynamics in epidemic research.</p>\",\"PeriodicalId\":54763,\"journal\":{\"name\":\"Journal of Theoretical Biology\",\"volume\":\" \",\"pages\":\"112210\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12456430/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jtbi.2025.112210\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jtbi.2025.112210","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

受感染宿主的病毒和抗体动力学与易感人群水平传播之间的联系仍然是科学界的一个中心难题,因为它涉及不同规模的几个复杂和动态过程。在这项研究中,我们整合了宿主内的确定性和随机模型来探索多尺度传输动力学。我们的方法考虑了遭遇频率、宿主内部变异性和再感染动态,以评估它们对流行病进展的影响。我们的研究结果表明,宿主内的随机性破坏了同步的病毒峰值,导致更均匀的传播模式,降低了针对病毒峰值载量的干预措施的有效性。考虑到抗体的半衰期为25天,在小群体中无法维持再感染的循环,但当循环网络超过21个节点时,再感染就可以自我维持,允许无限循环。这些发现强调了在流行病研究中整合宿主内动力学的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linking within-host immune dynamics to between-host transmission and reinfection risk.

The link between the virus and antibody dynamics of an infected host to the transmission of the virus to a susceptible population remains a central problem in science as it involves several complex and dynamic processes at different scales. In this study, we integrate deterministic and stochastic within-host models to explore multiscale transmission dynamics. Our methodology accounts for encounter frequency, within-host variability, and reinfection dynamics to assess their impact on epidemic progression. Our results show that within-host stochasticity disrupts synchronized viral peaks, leading to a more uniform transmission pattern and reducing the effectiveness of interventions targeting peak viral load. Considering the half-life of antibodies is 25 days, cycles of reinfections cannot be maintained in small populations, but reinfections become self-sustaining when a circular network exceeds 21 nodes, allowing indefinite circulation. These findings emphasize the need for integrating within-host dynamics in epidemic research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
5.00%
发文量
218
审稿时长
51 days
期刊介绍: The Journal of Theoretical Biology is the leading forum for theoretical perspectives that give insight into biological processes. It covers a very wide range of topics and is of interest to biologists in many areas of research, including: • Brain and Neuroscience • Cancer Growth and Treatment • Cell Biology • Developmental Biology • Ecology • Evolution • Immunology, • Infectious and non-infectious Diseases, • Mathematical, Computational, Biophysical and Statistical Modeling • Microbiology, Molecular Biology, and Biochemistry • Networks and Complex Systems • Physiology • Pharmacodynamics • Animal Behavior and Game Theory Acceptable papers are those that bear significant importance on the biology per se being presented, and not on the mathematical analysis. Papers that include some data or experimental material bearing on theory will be considered, including those that contain comparative study, statistical data analysis, mathematical proof, computer simulations, experiments, field observations, or even philosophical arguments, which are all methods to support or reject theoretical ideas. However, there should be a concerted effort to make papers intelligible to biologists in the chosen field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信