矿物皮质激素受体在皮肤中的作用。

IF 3.6 3区 医学 Q2 CELL BIOLOGY
Molecular and Cellular Endocrinology Pub Date : 2025-10-01 Epub Date: 2025-07-29 DOI:10.1016/j.mce.2025.112628
Natalia Fossas De Mello, Wendy B Bollag
{"title":"矿物皮质激素受体在皮肤中的作用。","authors":"Natalia Fossas De Mello, Wendy B Bollag","doi":"10.1016/j.mce.2025.112628","DOIUrl":null,"url":null,"abstract":"<p><p>The mineralocorticoid receptor (MR) plays a pivotal role in skin homeostasis, inflammation, and repair, interacting closely with the glucocorticoid receptor (GR) to regulate various physiological and pathological processes. Dysregulation of MR signaling has been implicated in several skin disorders, including psoriasis, atopic dermatitis, and impaired wound healing. Furthermore, studies have shown that patients with primary hyperaldosteronism exhibit epidermal hyperplasia, impaired differentiation, increased immune cell infiltrates, and elevated pro-inflammatory cytokines due to MR overactivation. Pharmacological studies demonstrate that MR antagonists can mitigate glucocorticoid-induced skin barrier dysfunction, epidermal atrophy, and delayed wound healing. Additionally, skin sodium storage and water conservation mechanisms are emerging as key factors in systemic fluid balance and blood pressure regulation, with skin glycosaminoglycans (GAGs) thought to serve as sodium reservoirs. Mouse models of psoriasis further reveal how the disrupted skin barrier activates systemic protective mechanisms, including water retention processes in the skin that can lead to increased blood pressure; psoriasis in humans is also associated with hypertension. These findings and additional data are discussed in this review and underscore the dual role of cutaneous MR in both maintaining epidermal integrity and contributing to inflammatory skin disorders, and potentially hypertension, when dysregulated. Targeting MR signaling pathways may offer novel therapeutic strategies for skin diseases while enhancing our understanding of the skin's role in systemic homeostasis.</p>","PeriodicalId":18707,"journal":{"name":"Molecular and Cellular Endocrinology","volume":" ","pages":"112628"},"PeriodicalIF":3.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of the mineralocorticoid receptor in skin.\",\"authors\":\"Natalia Fossas De Mello, Wendy B Bollag\",\"doi\":\"10.1016/j.mce.2025.112628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The mineralocorticoid receptor (MR) plays a pivotal role in skin homeostasis, inflammation, and repair, interacting closely with the glucocorticoid receptor (GR) to regulate various physiological and pathological processes. Dysregulation of MR signaling has been implicated in several skin disorders, including psoriasis, atopic dermatitis, and impaired wound healing. Furthermore, studies have shown that patients with primary hyperaldosteronism exhibit epidermal hyperplasia, impaired differentiation, increased immune cell infiltrates, and elevated pro-inflammatory cytokines due to MR overactivation. Pharmacological studies demonstrate that MR antagonists can mitigate glucocorticoid-induced skin barrier dysfunction, epidermal atrophy, and delayed wound healing. Additionally, skin sodium storage and water conservation mechanisms are emerging as key factors in systemic fluid balance and blood pressure regulation, with skin glycosaminoglycans (GAGs) thought to serve as sodium reservoirs. Mouse models of psoriasis further reveal how the disrupted skin barrier activates systemic protective mechanisms, including water retention processes in the skin that can lead to increased blood pressure; psoriasis in humans is also associated with hypertension. These findings and additional data are discussed in this review and underscore the dual role of cutaneous MR in both maintaining epidermal integrity and contributing to inflammatory skin disorders, and potentially hypertension, when dysregulated. Targeting MR signaling pathways may offer novel therapeutic strategies for skin diseases while enhancing our understanding of the skin's role in systemic homeostasis.</p>\",\"PeriodicalId\":18707,\"journal\":{\"name\":\"Molecular and Cellular Endocrinology\",\"volume\":\" \",\"pages\":\"112628\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mce.2025.112628\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.mce.2025.112628","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

矿物皮质激素受体(MR)在皮肤稳态、炎症和修复中起着关键作用,与糖皮质激素受体(GR)密切相互作用,调节各种生理和病理过程。磁共振信号的失调与多种皮肤疾病有关,包括牛皮癣、特应性皮炎和伤口愈合受损。此外,研究表明原发性醛固酮增多症患者表现为表皮增生、分化受损、免疫细胞浸润增加以及MR过度激活导致的促炎细胞因子升高。药理学研究表明MR拮抗剂可以减轻糖皮质激素引起的皮肤屏障功能障碍、表皮萎缩和伤口愈合延迟。此外,皮肤的钠储存和水分保存机制正在成为全身体液平衡和血压调节的关键因素,皮肤糖胺聚糖(GAGs)被认为是钠储存库。牛皮癣小鼠模型进一步揭示了被破坏的皮肤屏障如何激活全身保护机制,包括皮肤中可能导致血压升高的水潴留过程;人类的牛皮癣也与高血压有关。本综述讨论了这些发现和其他数据,并强调了皮肤MR在维持表皮完整性和促进炎症性皮肤疾病以及当失调时潜在的高血压方面的双重作用。靶向MR信号通路可能为皮肤病提供新的治疗策略,同时增强我们对皮肤在全身稳态中的作用的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The role of the mineralocorticoid receptor in skin.

The mineralocorticoid receptor (MR) plays a pivotal role in skin homeostasis, inflammation, and repair, interacting closely with the glucocorticoid receptor (GR) to regulate various physiological and pathological processes. Dysregulation of MR signaling has been implicated in several skin disorders, including psoriasis, atopic dermatitis, and impaired wound healing. Furthermore, studies have shown that patients with primary hyperaldosteronism exhibit epidermal hyperplasia, impaired differentiation, increased immune cell infiltrates, and elevated pro-inflammatory cytokines due to MR overactivation. Pharmacological studies demonstrate that MR antagonists can mitigate glucocorticoid-induced skin barrier dysfunction, epidermal atrophy, and delayed wound healing. Additionally, skin sodium storage and water conservation mechanisms are emerging as key factors in systemic fluid balance and blood pressure regulation, with skin glycosaminoglycans (GAGs) thought to serve as sodium reservoirs. Mouse models of psoriasis further reveal how the disrupted skin barrier activates systemic protective mechanisms, including water retention processes in the skin that can lead to increased blood pressure; psoriasis in humans is also associated with hypertension. These findings and additional data are discussed in this review and underscore the dual role of cutaneous MR in both maintaining epidermal integrity and contributing to inflammatory skin disorders, and potentially hypertension, when dysregulated. Targeting MR signaling pathways may offer novel therapeutic strategies for skin diseases while enhancing our understanding of the skin's role in systemic homeostasis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular and Cellular Endocrinology
Molecular and Cellular Endocrinology 医学-内分泌学与代谢
CiteScore
9.00
自引率
2.40%
发文量
174
审稿时长
42 days
期刊介绍: Molecular and Cellular Endocrinology was established in 1974 to meet the demand for integrated publication on all aspects related to the genetic and biochemical effects, synthesis and secretions of extracellular signals (hormones, neurotransmitters, etc.) and to the understanding of cellular regulatory mechanisms involved in hormonal control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信