metaboserv是一个选择、交换和可视化代谢组学数据的平台,具有受控的数据访问。

IF 11.8 2区 生物学 Q1 MULTIDISCIPLINARY SCIENCES
Tim Tucholski, Angela Maennel, Yacoub Abelard Njipouombe Nsangou, Sven Schuchardt, Matthias Gruber, Fabian Kellermeier, Katja Dettmer, Peter J Oefner, Wolfram Gronwald, Michael Altenbuchinger, Jürgen Dönitz, Helena U Zacharias
{"title":"metaboserv是一个选择、交换和可视化代谢组学数据的平台,具有受控的数据访问。","authors":"Tim Tucholski, Angela Maennel, Yacoub Abelard Njipouombe Nsangou, Sven Schuchardt, Matthias Gruber, Fabian Kellermeier, Katja Dettmer, Peter J Oefner, Wolfram Gronwald, Michael Altenbuchinger, Jürgen Dönitz, Helena U Zacharias","doi":"10.1093/gigascience/giaf075","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The growing number of metabolomics studies, based on high-dimensional data measured by hyphenated mass spectrometry (MS) and/or nuclear magnetic resonance (NMR) spectroscopy, has sparked the creation of several public metabolomics data repositories. Each repository emphasizes different aspects regarding data selection and representation, but most offer only limited options for privacy-preserving data sharing.</p><p><strong>Results: </strong>We present MetaboSERV, an open-source, browser-based metabolomics platform dedicated to the selection, integration, and sharing of quantitative metabolomics data and metadata with controlled data access. MetaboSERV aims to aid researchers in analyzing their results by facilitating means to browse, visualize, and compare data across available datasets. It provides different access control functionalities, creating an environment in which data can be shared safely in a privacy-preserving manner to support collaborative and interdisciplinary research. Furthermore, it is designed to be extensible and adaptable to existing data management infrastructures through the creation of self-managed MetaboSERV instances, for which we provide the source code and a set of configurable Docker images.</p><p><strong>Conclusions: </strong>The public MetaboSERV instance is available at https://metaboserv.ckdn.app, and the source code can be found at https://gitlab.gwdg.de/MedBioinf/metabolomics/metaboserv. The Research Resource Identifier (RRID) for MetaboSERV is SCR_025496.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"14 ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12315529/pdf/","citationCount":"0","resultStr":"{\"title\":\"MetaboSERV-a platform for selecting, exchanging, and visualizing metabolomics data with controlled data access.\",\"authors\":\"Tim Tucholski, Angela Maennel, Yacoub Abelard Njipouombe Nsangou, Sven Schuchardt, Matthias Gruber, Fabian Kellermeier, Katja Dettmer, Peter J Oefner, Wolfram Gronwald, Michael Altenbuchinger, Jürgen Dönitz, Helena U Zacharias\",\"doi\":\"10.1093/gigascience/giaf075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The growing number of metabolomics studies, based on high-dimensional data measured by hyphenated mass spectrometry (MS) and/or nuclear magnetic resonance (NMR) spectroscopy, has sparked the creation of several public metabolomics data repositories. Each repository emphasizes different aspects regarding data selection and representation, but most offer only limited options for privacy-preserving data sharing.</p><p><strong>Results: </strong>We present MetaboSERV, an open-source, browser-based metabolomics platform dedicated to the selection, integration, and sharing of quantitative metabolomics data and metadata with controlled data access. MetaboSERV aims to aid researchers in analyzing their results by facilitating means to browse, visualize, and compare data across available datasets. It provides different access control functionalities, creating an environment in which data can be shared safely in a privacy-preserving manner to support collaborative and interdisciplinary research. Furthermore, it is designed to be extensible and adaptable to existing data management infrastructures through the creation of self-managed MetaboSERV instances, for which we provide the source code and a set of configurable Docker images.</p><p><strong>Conclusions: </strong>The public MetaboSERV instance is available at https://metaboserv.ckdn.app, and the source code can be found at https://gitlab.gwdg.de/MedBioinf/metabolomics/metaboserv. The Research Resource Identifier (RRID) for MetaboSERV is SCR_025496.</p>\",\"PeriodicalId\":12581,\"journal\":{\"name\":\"GigaScience\",\"volume\":\"14 \",\"pages\":\"\"},\"PeriodicalIF\":11.8000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12315529/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GigaScience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/gigascience/giaf075\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giaf075","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景:基于连字符质谱(MS)和/或核磁共振(NMR)光谱测量的高维数据的代谢组学研究越来越多,引发了几个公共代谢组学数据库的创建。每个存储库强调关于数据选择和表示的不同方面,但大多数存储库只提供有限的选项来保护隐私的数据共享。结果:我们提出了MetaboSERV,一个开源的、基于浏览器的代谢组学平台,致力于选择、整合和共享定量代谢组学数据和元数据,并控制数据访问。MetaboSERV旨在通过促进浏览、可视化和比较可用数据集的数据来帮助研究人员分析他们的结果。它提供了不同的访问控制功能,创建了一个环境,在这个环境中,数据可以以保护隐私的方式安全地共享,以支持协作和跨学科研究。此外,通过创建自我管理的MetaboSERV实例,它被设计为可扩展和适应现有的数据管理基础设施,我们为此提供了源代码和一组可配置的Docker映像。结论:公共MetaboSERV实例可以在https://metaboserv.ckdn.app上找到,源代码可以在https://gitlab.gwdg.de/MedBioinf/metabolomics/metaboserv上找到。MetaboSERV的研究资源标识符(rid)是SCR_025496。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MetaboSERV-a platform for selecting, exchanging, and visualizing metabolomics data with controlled data access.

Background: The growing number of metabolomics studies, based on high-dimensional data measured by hyphenated mass spectrometry (MS) and/or nuclear magnetic resonance (NMR) spectroscopy, has sparked the creation of several public metabolomics data repositories. Each repository emphasizes different aspects regarding data selection and representation, but most offer only limited options for privacy-preserving data sharing.

Results: We present MetaboSERV, an open-source, browser-based metabolomics platform dedicated to the selection, integration, and sharing of quantitative metabolomics data and metadata with controlled data access. MetaboSERV aims to aid researchers in analyzing their results by facilitating means to browse, visualize, and compare data across available datasets. It provides different access control functionalities, creating an environment in which data can be shared safely in a privacy-preserving manner to support collaborative and interdisciplinary research. Furthermore, it is designed to be extensible and adaptable to existing data management infrastructures through the creation of self-managed MetaboSERV instances, for which we provide the source code and a set of configurable Docker images.

Conclusions: The public MetaboSERV instance is available at https://metaboserv.ckdn.app, and the source code can be found at https://gitlab.gwdg.de/MedBioinf/metabolomics/metaboserv. The Research Resource Identifier (RRID) for MetaboSERV is SCR_025496.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GigaScience
GigaScience MULTIDISCIPLINARY SCIENCES-
CiteScore
15.50
自引率
1.10%
发文量
119
审稿时长
1 weeks
期刊介绍: GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信