Christina E Sabin, James D Lauderdale, Douglas B Menke
{"title":"蜥蜴作为爬行动物发育和进化中基因功能研究的模式系统。","authors":"Christina E Sabin, James D Lauderdale, Douglas B Menke","doi":"10.1101/pdb.top108535","DOIUrl":null,"url":null,"abstract":"<p><p><i>Anolis</i> lizards are an ecologically diverse group that includes more than 400 described species. These reptiles have been the subject of wide-ranging studies, from speciation and convergent evolution to climate adaptation and tail regeneration. While CRISPR-based gene editing has tremendous potential to reveal new insights into these and other aspects of <i>Anolis</i> biology, the reproductive biology of these reptiles has presented significant barriers to gene editing. Here, we briefly summarize gene editing approaches in vertebrates and discuss some of the major challenges associated with the performance of gene editing in anoles. We then introduce a recently established surgical procedure that enables the injection of CRISPR-Cas into the developing oocytes of female lizards. This approach circumvents the need to manipulate early-stage embryos and permits the production of gene-edited anoles. This method has recently been successfully adapted for use in other reptiles, suggesting that it may be effective in a wide range of species and will broadly enable studies of gene function in reptiles.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12376193/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>Anolis</i> Lizards as a Model System for Studies of Gene Function in Reptile Development and Evolution.\",\"authors\":\"Christina E Sabin, James D Lauderdale, Douglas B Menke\",\"doi\":\"10.1101/pdb.top108535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Anolis</i> lizards are an ecologically diverse group that includes more than 400 described species. These reptiles have been the subject of wide-ranging studies, from speciation and convergent evolution to climate adaptation and tail regeneration. While CRISPR-based gene editing has tremendous potential to reveal new insights into these and other aspects of <i>Anolis</i> biology, the reproductive biology of these reptiles has presented significant barriers to gene editing. Here, we briefly summarize gene editing approaches in vertebrates and discuss some of the major challenges associated with the performance of gene editing in anoles. We then introduce a recently established surgical procedure that enables the injection of CRISPR-Cas into the developing oocytes of female lizards. This approach circumvents the need to manipulate early-stage embryos and permits the production of gene-edited anoles. This method has recently been successfully adapted for use in other reptiles, suggesting that it may be effective in a wide range of species and will broadly enable studies of gene function in reptiles.</p>\",\"PeriodicalId\":10496,\"journal\":{\"name\":\"Cold Spring Harbor protocols\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12376193/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cold Spring Harbor protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/pdb.top108535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/pdb.top108535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Anolis Lizards as a Model System for Studies of Gene Function in Reptile Development and Evolution.
Anolis lizards are an ecologically diverse group that includes more than 400 described species. These reptiles have been the subject of wide-ranging studies, from speciation and convergent evolution to climate adaptation and tail regeneration. While CRISPR-based gene editing has tremendous potential to reveal new insights into these and other aspects of Anolis biology, the reproductive biology of these reptiles has presented significant barriers to gene editing. Here, we briefly summarize gene editing approaches in vertebrates and discuss some of the major challenges associated with the performance of gene editing in anoles. We then introduce a recently established surgical procedure that enables the injection of CRISPR-Cas into the developing oocytes of female lizards. This approach circumvents the need to manipulate early-stage embryos and permits the production of gene-edited anoles. This method has recently been successfully adapted for use in other reptiles, suggesting that it may be effective in a wide range of species and will broadly enable studies of gene function in reptiles.
Cold Spring Harbor protocolsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.00
自引率
0.00%
发文量
163
期刊介绍:
Cold Spring Harbor Laboratory is renowned for its teaching of biomedical research techniques. For decades, participants in its celebrated, hands-on courses and users of its laboratory manuals have gained access to the most authoritative and reliable methods in molecular and cellular biology. Now that access has moved online. Cold Spring Harbor Protocols is an interdisciplinary journal providing a definitive source of research methods in cell, developmental and molecular biology, genetics, bioinformatics, protein science, computational biology, immunology, neuroscience and imaging. Each monthly issue details multiple essential methods—a mix of cutting-edge and well-established techniques.