基于自监督结构语义图自编码器的高效表嵌入

IF 6.9 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jinlong Tian , Shixuan Liu , Ruochun Jin , Mengmeng Li , Yanfang Zhou , Xinhai Xu , Yuhua Tang
{"title":"基于自监督结构语义图自编码器的高效表嵌入","authors":"Jinlong Tian ,&nbsp;Shixuan Liu ,&nbsp;Ruochun Jin ,&nbsp;Mengmeng Li ,&nbsp;Yanfang Zhou ,&nbsp;Xinhai Xu ,&nbsp;Yuhua Tang","doi":"10.1016/j.ipm.2025.104298","DOIUrl":null,"url":null,"abstract":"<div><div>Representing tabular data effectively is difficult due to its structural complexity and semantic nuances. Existing models either inadequately capture these features or suffer from computational inefficiency. This paper presents TEA (Table Embedding Autoencoder), a self-supervised learning framework for tabular data embedding. TEA utilizes a Contextual Tabular Graph representation incorporating crucial table relationships and a specialized Table Graph Autoencoder (TGAE) with multi-facet reconstruction (feature/edge/degree). This design ensures efficient learning of comprehensive structural and semantic embeddings. On eight benchmark datasets, TEA surpasses SOTA tabular models and LLMs, achieving average F-measure improvements of 14 (entity resolution). Crucially, TEA is 4x more computationally efficient than the SOTA model, facilitating large-scale data processing.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"63 1","pages":"Article 104298"},"PeriodicalIF":6.9000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Table Embeddings via Self-Supervised Structural-Semantic Graph Autoencoder\",\"authors\":\"Jinlong Tian ,&nbsp;Shixuan Liu ,&nbsp;Ruochun Jin ,&nbsp;Mengmeng Li ,&nbsp;Yanfang Zhou ,&nbsp;Xinhai Xu ,&nbsp;Yuhua Tang\",\"doi\":\"10.1016/j.ipm.2025.104298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Representing tabular data effectively is difficult due to its structural complexity and semantic nuances. Existing models either inadequately capture these features or suffer from computational inefficiency. This paper presents TEA (Table Embedding Autoencoder), a self-supervised learning framework for tabular data embedding. TEA utilizes a Contextual Tabular Graph representation incorporating crucial table relationships and a specialized Table Graph Autoencoder (TGAE) with multi-facet reconstruction (feature/edge/degree). This design ensures efficient learning of comprehensive structural and semantic embeddings. On eight benchmark datasets, TEA surpasses SOTA tabular models and LLMs, achieving average F-measure improvements of 14 (entity resolution). Crucially, TEA is 4x more computationally efficient than the SOTA model, facilitating large-scale data processing.</div></div>\",\"PeriodicalId\":50365,\"journal\":{\"name\":\"Information Processing & Management\",\"volume\":\"63 1\",\"pages\":\"Article 104298\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing & Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306457325002390\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457325002390","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

由于表格数据的结构复杂性和语义的细微差别,有效地表示表格数据是很困难的。现有模型要么不能充分捕捉这些特征,要么计算效率低下。本文提出了一种用于表格数据嵌入的自监督学习框架TEA (Table Embedding Autoencoder)。TEA利用包含关键表关系的上下文表图表示和具有多面重构(特征/边缘/度)的专用表图自动编码器(TGAE)。这种设计确保了全面的结构和语义嵌入的高效学习。在8个基准数据集上,TEA超过了SOTA表格模型和llm,平均F-measure提高了14(实体分辨率)。至关重要的是,TEA的计算效率比SOTA模型高4倍,有利于大规模数据处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Table Embeddings via Self-Supervised Structural-Semantic Graph Autoencoder
Representing tabular data effectively is difficult due to its structural complexity and semantic nuances. Existing models either inadequately capture these features or suffer from computational inefficiency. This paper presents TEA (Table Embedding Autoencoder), a self-supervised learning framework for tabular data embedding. TEA utilizes a Contextual Tabular Graph representation incorporating crucial table relationships and a specialized Table Graph Autoencoder (TGAE) with multi-facet reconstruction (feature/edge/degree). This design ensures efficient learning of comprehensive structural and semantic embeddings. On eight benchmark datasets, TEA surpasses SOTA tabular models and LLMs, achieving average F-measure improvements of 14 (entity resolution). Crucially, TEA is 4x more computationally efficient than the SOTA model, facilitating large-scale data processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信