几何非线性结构的傅里叶特征嵌入式物理信息神经网络拓扑优化框架

IF 7.3 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Hyogu Jeong , Jinshuai Bai , Chanaka Batuwatta-Gamage , Zachary J. Wegert , Connor N. Mallon , Vivien J. Challis , Yilin Gui , YuanTong Gu
{"title":"几何非线性结构的傅里叶特征嵌入式物理信息神经网络拓扑优化框架","authors":"Hyogu Jeong ,&nbsp;Jinshuai Bai ,&nbsp;Chanaka Batuwatta-Gamage ,&nbsp;Zachary J. Wegert ,&nbsp;Connor N. Mallon ,&nbsp;Vivien J. Challis ,&nbsp;Yilin Gui ,&nbsp;YuanTong Gu","doi":"10.1016/j.cma.2025.118244","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a Fourier feature-embedded physics-informed neural network framework for topology optimization (FF-PINNTO) of geometrically nonlinear structures. The framework leverages the mesh-free nature of physics-informed neural networks to model nonlinear partial differential equations, addressing instabilities in traditional methods. It integrates the deep energy method and a neural reparameterization scheme, replacing finite element analysis and sensitivity analysis operations. The deep energy method solves the hyperelasticity problem by minimizing potential energy within the neural network, while sensitivity analysis is performed via automatic differentiation. Unlike conventional methods, the framework achieves stable solutions without energy interpolation or relaxation techniques. Fourier feature embedding and periodic activation functions accelerate physics-informed neural network training, enabling more efficient computations than the traditional numerical methods. Benchmark problems validate the efficiency and accuracy of the framework, demonstrating its potential as a robust alternative for nonlinear topology optimization.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"446 ","pages":"Article 118244"},"PeriodicalIF":7.3000,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fourier feature embedded physics-informed neural network-based topology optimization (FF-PINNTO) framework for geometrically nonlinear structures\",\"authors\":\"Hyogu Jeong ,&nbsp;Jinshuai Bai ,&nbsp;Chanaka Batuwatta-Gamage ,&nbsp;Zachary J. Wegert ,&nbsp;Connor N. Mallon ,&nbsp;Vivien J. Challis ,&nbsp;Yilin Gui ,&nbsp;YuanTong Gu\",\"doi\":\"10.1016/j.cma.2025.118244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a Fourier feature-embedded physics-informed neural network framework for topology optimization (FF-PINNTO) of geometrically nonlinear structures. The framework leverages the mesh-free nature of physics-informed neural networks to model nonlinear partial differential equations, addressing instabilities in traditional methods. It integrates the deep energy method and a neural reparameterization scheme, replacing finite element analysis and sensitivity analysis operations. The deep energy method solves the hyperelasticity problem by minimizing potential energy within the neural network, while sensitivity analysis is performed via automatic differentiation. Unlike conventional methods, the framework achieves stable solutions without energy interpolation or relaxation techniques. Fourier feature embedding and periodic activation functions accelerate physics-informed neural network training, enabling more efficient computations than the traditional numerical methods. Benchmark problems validate the efficiency and accuracy of the framework, demonstrating its potential as a robust alternative for nonlinear topology optimization.</div></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":\"446 \",\"pages\":\"Article 118244\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S004578252500516X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004578252500516X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种用于几何非线性结构拓扑优化的傅里叶特征嵌入物理信息神经网络框架(FF-PINNTO)。该框架利用物理信息神经网络的无网格特性来模拟非线性偏微分方程,解决传统方法中的不稳定性问题。它集成了深能量法和神经重参数化方案,取代了有限元分析和灵敏度分析操作。深能量法通过最小化神经网络内的势能来解决超弹性问题,而灵敏度分析则通过自动微分进行。与传统方法不同,该框架无需能量插值或松弛技术即可获得稳定的解。傅里叶特征嵌入和周期激活函数加速了物理信息神经网络的训练,使计算比传统的数值方法更有效。基准问题验证了该框架的效率和准确性,展示了其作为非线性拓扑优化的鲁棒替代方案的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fourier feature embedded physics-informed neural network-based topology optimization (FF-PINNTO) framework for geometrically nonlinear structures
This study presents a Fourier feature-embedded physics-informed neural network framework for topology optimization (FF-PINNTO) of geometrically nonlinear structures. The framework leverages the mesh-free nature of physics-informed neural networks to model nonlinear partial differential equations, addressing instabilities in traditional methods. It integrates the deep energy method and a neural reparameterization scheme, replacing finite element analysis and sensitivity analysis operations. The deep energy method solves the hyperelasticity problem by minimizing potential energy within the neural network, while sensitivity analysis is performed via automatic differentiation. Unlike conventional methods, the framework achieves stable solutions without energy interpolation or relaxation techniques. Fourier feature embedding and periodic activation functions accelerate physics-informed neural network training, enabling more efficient computations than the traditional numerical methods. Benchmark problems validate the efficiency and accuracy of the framework, demonstrating its potential as a robust alternative for nonlinear topology optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信