乘法Courant代数上的Manin三元组

IF 0.7 4区 数学 Q3 MATHEMATICS
Ana Carolina Mançur
{"title":"乘法Courant代数上的Manin三元组","authors":"Ana Carolina Mançur","doi":"10.1016/j.difgeo.2025.102273","DOIUrl":null,"url":null,"abstract":"<div><div>We extend the characterization of Lie bialgebroids via Manin triples to the context of double structures over Lie groupoids. We consider Lie bialgebroid groupoids, given by LA-groupoids in duality, and establish their correspondence with multiplicative Manin triples, i.e., CA-groupoids equipped with a pair of complementary multiplicative Dirac structures. As an application, we give a new viewpoint to the co-quadratic Lie algebroids of Lang, Qiao, and Yin <span><span>[13]</span></span> and the Manin triple description of Lie bialgebroid crossed modules.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"100 ","pages":"Article 102273"},"PeriodicalIF":0.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manin triples on multiplicative Courant algebroids\",\"authors\":\"Ana Carolina Mançur\",\"doi\":\"10.1016/j.difgeo.2025.102273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We extend the characterization of Lie bialgebroids via Manin triples to the context of double structures over Lie groupoids. We consider Lie bialgebroid groupoids, given by LA-groupoids in duality, and establish their correspondence with multiplicative Manin triples, i.e., CA-groupoids equipped with a pair of complementary multiplicative Dirac structures. As an application, we give a new viewpoint to the co-quadratic Lie algebroids of Lang, Qiao, and Yin <span><span>[13]</span></span> and the Manin triple description of Lie bialgebroid crossed modules.</div></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"100 \",\"pages\":\"Article 102273\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224525000488\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224525000488","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们通过Manin三元组将李双代数群的表征推广到李群上的双结构。我们考虑由对偶性的la -群拟给出的李双代数群拟,并建立了它们与乘法Manin三元组的对应关系,即ca -群拟具有一对互补的乘法Dirac结构。作为应用,我们给出了Lang、Qiao、Yin的共二次李代数体和李双代数体交叉模的Manin三重描述的新观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Manin triples on multiplicative Courant algebroids
We extend the characterization of Lie bialgebroids via Manin triples to the context of double structures over Lie groupoids. We consider Lie bialgebroid groupoids, given by LA-groupoids in duality, and establish their correspondence with multiplicative Manin triples, i.e., CA-groupoids equipped with a pair of complementary multiplicative Dirac structures. As an application, we give a new viewpoint to the co-quadratic Lie algebroids of Lang, Qiao, and Yin [13] and the Manin triple description of Lie bialgebroid crossed modules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信